diff options
Diffstat (limited to 'omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt')
-rw-r--r-- | omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt | 430 |
1 files changed, 0 insertions, 430 deletions
diff --git a/omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt b/omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt deleted file mode 100644 index 6d3ef2a..0000000 --- a/omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt +++ /dev/null @@ -1,430 +0,0 @@ -# Omega Calculator v1.2 (based on Omega Library 1.2, August, 2000): -# # This is the file facts.prew, which is prepended to the .prew files -# # for the particular code generation we want, defines things like the -# # iteration space and dependences. Known facts are inserted by the -# # Makefile. -# # -# # If you're looking at a .w file instead of facts.prew, then you should -# # remember to edit the original .prew files, not the .w files. -# # -# # This facts.prew file describes the program -# # -# # for(i = 0; i <= N-1; i++) { -# # cur[i]=... -# # } -# # for(t = 0; t < T; t++) { -# # for(i = 0; i <= N-1; i++) { -# # old[i]=cur[i]; -# # } -# # for(i = 1; i <= N-2; i++) { -# # cur[i] = (old[i-1]+old[i]+old[i]+old[i+1])*0.25; -# # } -# # } -# -# -# -# # first, the spaces and memory maps -# -# symbolic T, N; -# -# -# IS_INIT := { [1,i,1,0,0] : 0<=i<=N-1 }; -# -# MM_INIT := { [1,i,1,0,0] -> [0,i] : 0<=i<=N-1 }; -# -# -# IS_COPY := { [2,t,0,i,1] : 0<=t<T && 0<=i<=N-1 }; -# -# MM_COPY := { [2,t,0,i,1] -> [t+1,i] : 0<=t<T && 0<=i<=N-1 }; -# -# -# IS_CALC := { [2,t,1,i,1] : 0<=t<T && 0< i< N-1 }; -# -# MM_CALC := { [2,t,1,i,1] -> [t+1,i] : 0<=t<T && 0< i< N-1 }; -# -# -# RESULTS := { [3,0,0,0,0] }; -# -# -# -# # memory-based Output and Flow/anti-dependences (among Assign (copy), and Calc) -# -# FWD5 := {[x,t,y,i,z] -> [x',t',y',i',z'] : -# (x'>x) or -# (x'=x and t'>t) or -# (x'=x and t'=t and y'>y) or -# (x'=x and t'=t and y'=y and i'>i) or -# (x'=x and t'=t and y'=y and i'=i and z'>z) }; -# -# FWD7 := {[x,t,y,i,z,a,b] -> [x',t',y',i',z',a',b'] : -# (x'>x) or -# (x'=x and t'>t) or -# (x'=x and t'=t and y'>y) or -# (x'=x and t'=t and y'=y and i'>i) or -# (x'=x and t'=t and y'=y and i'=i and z'>z) or -# (x'=x and t'=t and y'=y and i'=i and z'=z and a'>a) or -# (x'=x and t'=t and y'=y and i'=i and z'=z and a'=a and b'>b) }; -# -# BWD5 := inverse FWD5; -# -# BWD7 := inverse FWD7; -# -# EQi := {[x,t,y,i,z] -> [x',t',y',i',z'] : i'=i }; -# -# -# # output deps -# -# OAA := (IS_COPY * IS_COPY) intersection FWD5 intersection EQi; -# -# OCC := (IS_CALC * IS_CALC) intersection FWD5 intersection EQi; -# -# -# # combined flow/anti deps -# -# FAC := (IS_COPY * IS_CALC) intersection FWD5 intersection {[2,t,0,i,1] -> [2,t',1,i',1] : (i'-1<=i<=i'+1)}; -# -# FCA := (IS_CALC * IS_COPY) intersection FWD5 intersection {[2,t,1,i,1] -> [2,t',0,i',1] : (i-1<=i'<=i+1)}; -# -# -# # total memory deps in the "core" -# -# COREMEMDEPS := OAA union OCC union FAC union FCA; -# -# -# -# -# # data flow for original code: -# -# DF_12p1 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,0,0,i,1] : 0<i<N-1 }; -# -# DF_12p2 := ( IS_INIT * IS_COPY ) intersection {[1,0,1,0,0] -> [2,t,0,0,1] }; -# -# DF_12p3 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,t,0,i,1] : i=N-1 && N>1 }; -# -# DF_32 := ( IS_CALC * IS_COPY ) intersection {[2,t,1,i,1] -> [2,t+1,0,i,1]}; -# -# -# DF_23a := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i+1,1] }; -# -# DF_23b := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i,1] }; -# -# DF_23c := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i-1,1] }; -# -# -# -# # data flow for array expanded code, -# # after forward substitution of "old[i] = cur[i]" -# -# DF1Ia := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; -# -# DF1Ib := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t>0 && i=0 } restrictDomain IS_INIT restrictRange IS_CALC; -# -# DF1C := { [2,t,1,i,1] -> [2,t+1,1,i+1,1] } restrictDomain IS_CALC restrictRange IS_CALC; -# -# DF2I := { [1,i,1,0,0] -> [2,t,1,i,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; -# -# DF2C := { [2,t,1,i,1] -> [2,t+1,1,i+0,1] } restrictDomain IS_CALC restrictRange IS_CALC; -# -# DF3Ia := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; -# -# DF3Ib := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t>0 && i=N-1 } restrictDomain IS_INIT restrictRange IS_CALC; -# -# DF3C := { [2,t,1,i,1] -> [2,t+1,1,i-1,1] } restrictDomain IS_CALC restrictRange IS_CALC; -# -# -# # total data flow -# -# COREDATAFLOW := DF1C union DF2C union DF3C; -# -# -# -# # arity expansion relations -# ex_0_5v := { [] -> [a,b,c,d,e] }; -# -# ex_0_7v := { [] -> [a,b,c,d,e,f,g] }; -# -# ex_3_5 := { [a,b,c] -> [a,b,c,0,0] }; -# -# ex_3_7 := { [a,b,c] -> [a,b,c,0,0,0,0] }; -# -# ex_5_7 := { [a,b,c,d,e] -> [a,b,c,d,e,0,0] }; -# -# -# ex_5_3 := { [a,b,c,0,0] -> [a,b,c] }; -# -# ex_7_3 := { [a,b,c,0,0,0,0] -> [a,b,c] }; -# -# ex_7_5 := { [a,b,c,d,e,0,0] -> [a,b,c,d,e] }; -# -# -# -# # stuff used in skew and tskew -# -# # Here is the description of time skewing from the current draft of the paper. -# IS_Trans := { [2,t,1,i,1] -> [2,tb,1,s,1,tt,1] : -# 0<=tt<500 && s=i+1*t && t=500*tb+tt }; -# -# -# IS_Tinv := inverse IS_Trans; -# -# -# # We use it to transform the iteration spaces -# TS_IS_CALC := IS_CALC join IS_Trans; -# -# # for some reason OC refuses do to this "join" but will do the reverse: -# # TS_IS_INIT := ex_7_5 join IS_INIT; -# TS_IS_INIT := IS_INIT join (inverse ex_7_5); -# -# -# # Now we can update the data flow relations to correspond to the new I.S.'s -# TS_DF1Ia := ex_7_5 join DF1Ia join IS_Trans; -# -# TS_DF1Ib := ex_7_5 join DF1Ib join IS_Trans; -# -# TS_DF1C := IS_Tinv join DF1C join IS_Trans; -# -# TS_DF2I := ex_7_5 join DF2I join IS_Trans; -# -# TS_DF2C := IS_Tinv join DF2C join IS_Trans; -# -# TS_DF3Ia := ex_7_5 join DF3Ia join IS_Trans; -# -# TS_DF3Ib := ex_7_5 join DF3Ib join IS_Trans; -# -# TS_DF3C := IS_Tinv join DF3C join IS_Trans; -# -# -# -# KNOWN := { [] : T >= 0 and N >= 4 }; -# -# -# # -# # multiprocessor version -# # time skewed iteration space -# # blocked memory mapping -# # -# -# # -# # First of all, if 500 is much less than 4000, -# # there's a problem with the constraints below. -# # To keep send and recv. slices from "crashing", 4000>=2BS+2 (safe approx?) -# # -# -# assertUnsatisfiable( { [] : 4000 < 2 * 500 + 2 } ); - -{ FALSE } - -# -# -# # this transformation has no existentially quantified variables; -# # basically, it factors out the common stuff below, -# # but the quantified variables are left in the output, so we can get them -# # everything after the 000 is not needed in final xform -# -# # -# # DANGER WILL ROBINSON! -# # the .c file depends on the fact that t4 is always the processor number -# # -# -# MP_TSKEW_ALL := { [2, t, 1, i, 1] -> -# [2, tb, slice, proc, t+i, tt, 000, t, i, lproc, t0, i0, ie]: -# ## -# ## define time block and tt -# ## -# 500*tb+tt = t and 0 <= tt < 500 -# ## -# ## define "logical proc", then "wrap" onto physical later: -# ## "logical proc" (lproc) = (t-i) div sigma -# ## -# and 4000*lproc <= t-i < 4000*(lproc+1) -# ## -# ## for uniproc. test, just do proc = -lproc (for multi, proc = lproc % 8) -# ## -# and proc = -lproc -# ## -# ## t0,i0 = first iteration in a block; -# ## t0,ie = maximum "i" in t0 of this block) -# ## -# and t0=500*tb -# and t0-ie=4000*lproc -# and i0+4000-1=ie -# }; -# -# -# # -# # We need to send things "down" (to same time block of next proc.) -# # and "right" (to next time block of next proc.) -# # The "+2" is for the things to send right (not mentioned in IPDPS paper). -# # -# -# MP_TSKEW_SEND_SL := MP_TSKEW_ALL join -# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> -# [2, tb, 1, proc, t_p_i, tt, 0] : -# ## define send slice... -# (t+i) <= (t0+(500-2) + i0+(500-1) + 2) -# }; -# -# -# MP_TSKEW_SEND_ME := MP_TSKEW_ALL join -# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> -# [2, tb, 2, proc, t_p_i, tt, 0] : -# ## in the send slice -# (t+i) <= (t0+(500-2) + i0+(500-1) + 2) -# ## and near the (t-i) border: -# and (t-i) >= ((t0-i0)-1) -# }; -# -# -# MP_TSKEW_COMP_SL := MP_TSKEW_ALL join -# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> -# [2, tb, 3, proc, t_p_i, tt, 0] : -# ## define computation slice... -# ## not send -# (t+i) > (t0+(500-2) + i0+(500-1) + 2) -# ## and not recv -# and (t+i) <= (t0+ie) -# }; -# -# -# -# -# # Receive the iterations that we sent, -# # but after the calculation, -# # and on the neighbor (lower) processor -# -# MP_TSKEW_R_FROM_ME := MP_TSKEW_SEND_ME join -# { [2, tb, 2, proc, t_p_i, tt, 0] -> -# [2, tb, 4, proc-1, t_p_i, tt, 0] }; -# -# -# -# MP_TSKEW_RECV_SL := MP_TSKEW_ALL join -# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> -# [2, tb, 5, proc, t_p_i, tt, 0] : -# ## define recv slice... -# (t+i) > (t0+ie) -# }; -# -# -# -# -# -# ## stuff to gather each processor's final results... -# -# IS_GATHER := IS_CALC intersection { [2,t,1,i,1] : t=T-1 }; -# -# -# GATHER_EXPANDER := MP_TSKEW_ALL join -# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> -# [3, tb, 7, proc, t_p_i, tt, 0] }; -# -# -# ## stuff to initialize things right in the first place -# -# ### NOTE THAT t4 (processor #) is used in a loop in initialization -# -# IS_INIT_EXP := { [1,t,i,0,0] : (-1=t && 0<=i<=N-1) || -# (0<=t<T && 0=i) || -# (0<=t<T && N-1=i) }; -# -# -# -# # send_slice + calc_slice + recv slice == total -# -# TheSendIS := domain(MP_TSKEW_SEND_SL restrictDomain IS_CALC); -# -# TheCompIS := domain(MP_TSKEW_COMP_SL restrictDomain IS_CALC); -# -# TheRecvIS := domain(MP_TSKEW_RECV_SL restrictDomain IS_CALC); -# -# -# assertUnsatisfiable(TheSendIS intersection TheCompIS); - -{[In_1,t,In_3,i,In_5] : FALSE } - -# -# assertUnsatisfiable(TheCompIS intersection TheRecvIS); - -{[In_1,t,In_3,i,In_5] : FALSE } - -# -# assertUnsatisfiable(TheSendIS intersection TheRecvIS); - -{[In_1,t,In_3,i,In_5] : FALSE } - -# -# # -# # These cause inexact negation and thus blow up... -# # -# # assertUnsatisfiable(IS_CALC - (TheSendIS union TheCompIS union TheRecvIS)); -# # assertUnsatisfiable((TheSendIS union TheCompIS union TheRecvIS) - IS_CALC); -# -# -# -# codegen -# ex_5_7 : IS_INIT_EXP, -# MP_TSKEW_SEND_SL : IS_CALC, -# MP_TSKEW_SEND_ME : IS_CALC, -# MP_TSKEW_COMP_SL : IS_CALC, -# MP_TSKEW_R_FROM_ME : IS_CALC, -# MP_TSKEW_RECV_SL : IS_CALC, -# GATHER_EXPANDER : IS_GATHER -# given (KNOWN join ex_0_7v); -for(t3 = 0; t3 <= N-1; t3++) { - s1(1,-1,t3,0,0); -} -for(t2 = 0; t2 <= T-1; t2++) { - s1(1,t2,0,0,0); - s1(1,t2,N-1,0,0); -} -for(t2 = 0; t2 <= intDiv(T-1,500); t2++) { - for(t4 = intDiv(-t2+7+7,8); t4 <= intDiv(-500*t2+N+3997,4000); t4++) { - for(t5 = max(1000*t2+4000*t4-3999,500*t2+1); t5 <= min(1000*t2+4000*t4-3000,N+T-3,2*N-4000*t4+3995); t5++) { - for(t6 = max(-N+t5-500*t2+2,0); t6 <= min(t5-500*t2-1,T-500*t2-1,intDiv(t5-4000*t4-1000*t2+3999,2)); t6++) { - s2(2,500*t2+t6,1,t5+-500*t2-t6,1); - } - } - } - for(t4 = max(intDiv(-T+4000+3999,4000),intDiv(-t2+7+7,8)); t4 <= intDiv(-500*t2+N+3997,4000); t4++) { - for(t5 = max(1000*t2+4000*t4-3999,-4000*t4+4000); t5 <= min(1000*t2+4000*t4-3000,2*N-4000*t4+3995,2*T+4000*t4-4000); t5++) { - for(t6 = intDiv(t5-4000*t4-1000*t2+3998+1,2); t6 <= intDiv(t5-4000*t4-1000*t2+3999,2); t6++) { - s3(2,500*t2+t6,1,t5+-500*t2-t6,1); - } - } - } - for(t4 = intDiv(-t2+1+7,8); t4 <= min(intDiv(-500*t2+N+3496,4000),intDiv(-1000*t2+N+T+2996,4000)); t4++) { - for(t5 = max(500*t2+1,4000*t4+1000*t2-2999); t5 <= min(N+T-3,4000*t4+1000*t2,N+500*t2+497); t5++) { - for(t6 = max(-N+t5-500*t2+2,0); t6 <= min(T-500*t2-1,t5-500*t2-1,499); t6++) { - s4(2,500*t2+t6,1,t5+-500*t2-t6,1); - } - } - } - for(t4 = max(intDiv(-T+3999,4000),intDiv(-t2-1+7,8)); t4 <= intDiv(-500*t2+N-3,4000); t4++) { - for(t5 = max(1000*t2+4000*t4+1,-4000*t4); t5 <= min(1000*t2+4000*t4+1000,2*N-4000*t4-5,2*T+4000*t4); t5++) { - for(t6 = intDiv(-1000*t2-4000*t4+t5-2+1,2); t6 <= intDiv(-1000*t2-4000*t4+t5-1,2); t6++) { - s5(2,500*t2+t6,1,t5+-500*t2-t6,1); - } - } - } - if (500*t2 <= T-2) { - for(t4 = intDiv(-t2+7,8); t4 <= min(intDiv(-500*t2+N+496,4000),intDiv(-1000*t2+N+T-4,4000)); t4++) { - for(t5 = max(1000*t2+4000*t4+1,-4000*t4+2); t5 <= min(2*T+4000*t4-2,N+T-3,N+500*t2+497,1000*t2+4000*t4+998); t5++) { - for(t6 = max(-N+t5-500*t2+2,intDiv(t5-4000*t4-1000*t2+1,2)); t6 <= min(t5-500*t2-1,T-500*t2-1,499); t6++) { - s6(2,500*t2+t6,1,t5+-500*t2-t6,1); - } - } - } - } -} -if (T >= 1) { - for(t2 = intDiv(T-500+499,500); t2 <= intDiv(T-1,500); t2++) { - for(t4 = intDiv(-T+2+3999,4000); t4 <= intDiv(N-T+3998,4000); t4++) { - for(t5 = max(4000*t4+2*T-4001,T); t5 <= min(4000*t4+2*T-2,N+T-3); t5++) { - s7(2,T-1,1,t5-T+1,1); - } - } - } -} - -# -# |