summaryrefslogtreecommitdiff
path: root/omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt
diff options
context:
space:
mode:
Diffstat (limited to 'omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt')
-rw-r--r--omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt430
1 files changed, 0 insertions, 430 deletions
diff --git a/omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt b/omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt
deleted file mode 100644
index 6d3ef2a..0000000
--- a/omegalib/examples/old_test/ts1d-mp-i_ts-m_b.oc-rt
+++ /dev/null
@@ -1,430 +0,0 @@
-# Omega Calculator v1.2 (based on Omega Library 1.2, August, 2000):
-# # This is the file facts.prew, which is prepended to the .prew files
-# # for the particular code generation we want, defines things like the
-# # iteration space and dependences. Known facts are inserted by the
-# # Makefile.
-# #
-# # If you're looking at a .w file instead of facts.prew, then you should
-# # remember to edit the original .prew files, not the .w files.
-# #
-# # This facts.prew file describes the program
-# #
-# # for(i = 0; i <= N-1; i++) {
-# # cur[i]=...
-# # }
-# # for(t = 0; t < T; t++) {
-# # for(i = 0; i <= N-1; i++) {
-# # old[i]=cur[i];
-# # }
-# # for(i = 1; i <= N-2; i++) {
-# # cur[i] = (old[i-1]+old[i]+old[i]+old[i+1])*0.25;
-# # }
-# # }
-#
-#
-#
-# # first, the spaces and memory maps
-#
-# symbolic T, N;
-#
-#
-# IS_INIT := { [1,i,1,0,0] : 0<=i<=N-1 };
-#
-# MM_INIT := { [1,i,1,0,0] -> [0,i] : 0<=i<=N-1 };
-#
-#
-# IS_COPY := { [2,t,0,i,1] : 0<=t<T && 0<=i<=N-1 };
-#
-# MM_COPY := { [2,t,0,i,1] -> [t+1,i] : 0<=t<T && 0<=i<=N-1 };
-#
-#
-# IS_CALC := { [2,t,1,i,1] : 0<=t<T && 0< i< N-1 };
-#
-# MM_CALC := { [2,t,1,i,1] -> [t+1,i] : 0<=t<T && 0< i< N-1 };
-#
-#
-# RESULTS := { [3,0,0,0,0] };
-#
-#
-#
-# # memory-based Output and Flow/anti-dependences (among Assign (copy), and Calc)
-#
-# FWD5 := {[x,t,y,i,z] -> [x',t',y',i',z'] :
-# (x'>x) or
-# (x'=x and t'>t) or
-# (x'=x and t'=t and y'>y) or
-# (x'=x and t'=t and y'=y and i'>i) or
-# (x'=x and t'=t and y'=y and i'=i and z'>z) };
-#
-# FWD7 := {[x,t,y,i,z,a,b] -> [x',t',y',i',z',a',b'] :
-# (x'>x) or
-# (x'=x and t'>t) or
-# (x'=x and t'=t and y'>y) or
-# (x'=x and t'=t and y'=y and i'>i) or
-# (x'=x and t'=t and y'=y and i'=i and z'>z) or
-# (x'=x and t'=t and y'=y and i'=i and z'=z and a'>a) or
-# (x'=x and t'=t and y'=y and i'=i and z'=z and a'=a and b'>b) };
-#
-# BWD5 := inverse FWD5;
-#
-# BWD7 := inverse FWD7;
-#
-# EQi := {[x,t,y,i,z] -> [x',t',y',i',z'] : i'=i };
-#
-#
-# # output deps
-#
-# OAA := (IS_COPY * IS_COPY) intersection FWD5 intersection EQi;
-#
-# OCC := (IS_CALC * IS_CALC) intersection FWD5 intersection EQi;
-#
-#
-# # combined flow/anti deps
-#
-# FAC := (IS_COPY * IS_CALC) intersection FWD5 intersection {[2,t,0,i,1] -> [2,t',1,i',1] : (i'-1<=i<=i'+1)};
-#
-# FCA := (IS_CALC * IS_COPY) intersection FWD5 intersection {[2,t,1,i,1] -> [2,t',0,i',1] : (i-1<=i'<=i+1)};
-#
-#
-# # total memory deps in the "core"
-#
-# COREMEMDEPS := OAA union OCC union FAC union FCA;
-#
-#
-#
-#
-# # data flow for original code:
-#
-# DF_12p1 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,0,0,i,1] : 0<i<N-1 };
-#
-# DF_12p2 := ( IS_INIT * IS_COPY ) intersection {[1,0,1,0,0] -> [2,t,0,0,1] };
-#
-# DF_12p3 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,t,0,i,1] : i=N-1 && N>1 };
-#
-# DF_32 := ( IS_CALC * IS_COPY ) intersection {[2,t,1,i,1] -> [2,t+1,0,i,1]};
-#
-#
-# DF_23a := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i+1,1] };
-#
-# DF_23b := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i,1] };
-#
-# DF_23c := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i-1,1] };
-#
-#
-#
-# # data flow for array expanded code,
-# # after forward substitution of "old[i] = cur[i]"
-#
-# DF1Ia := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
-#
-# DF1Ib := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t>0 && i=0 } restrictDomain IS_INIT restrictRange IS_CALC;
-#
-# DF1C := { [2,t,1,i,1] -> [2,t+1,1,i+1,1] } restrictDomain IS_CALC restrictRange IS_CALC;
-#
-# DF2I := { [1,i,1,0,0] -> [2,t,1,i,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
-#
-# DF2C := { [2,t,1,i,1] -> [2,t+1,1,i+0,1] } restrictDomain IS_CALC restrictRange IS_CALC;
-#
-# DF3Ia := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
-#
-# DF3Ib := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t>0 && i=N-1 } restrictDomain IS_INIT restrictRange IS_CALC;
-#
-# DF3C := { [2,t,1,i,1] -> [2,t+1,1,i-1,1] } restrictDomain IS_CALC restrictRange IS_CALC;
-#
-#
-# # total data flow
-#
-# COREDATAFLOW := DF1C union DF2C union DF3C;
-#
-#
-#
-# # arity expansion relations
-# ex_0_5v := { [] -> [a,b,c,d,e] };
-#
-# ex_0_7v := { [] -> [a,b,c,d,e,f,g] };
-#
-# ex_3_5 := { [a,b,c] -> [a,b,c,0,0] };
-#
-# ex_3_7 := { [a,b,c] -> [a,b,c,0,0,0,0] };
-#
-# ex_5_7 := { [a,b,c,d,e] -> [a,b,c,d,e,0,0] };
-#
-#
-# ex_5_3 := { [a,b,c,0,0] -> [a,b,c] };
-#
-# ex_7_3 := { [a,b,c,0,0,0,0] -> [a,b,c] };
-#
-# ex_7_5 := { [a,b,c,d,e,0,0] -> [a,b,c,d,e] };
-#
-#
-#
-# # stuff used in skew and tskew
-#
-# # Here is the description of time skewing from the current draft of the paper.
-# IS_Trans := { [2,t,1,i,1] -> [2,tb,1,s,1,tt,1] :
-# 0<=tt<500 && s=i+1*t && t=500*tb+tt };
-#
-#
-# IS_Tinv := inverse IS_Trans;
-#
-#
-# # We use it to transform the iteration spaces
-# TS_IS_CALC := IS_CALC join IS_Trans;
-#
-# # for some reason OC refuses do to this "join" but will do the reverse:
-# # TS_IS_INIT := ex_7_5 join IS_INIT;
-# TS_IS_INIT := IS_INIT join (inverse ex_7_5);
-#
-#
-# # Now we can update the data flow relations to correspond to the new I.S.'s
-# TS_DF1Ia := ex_7_5 join DF1Ia join IS_Trans;
-#
-# TS_DF1Ib := ex_7_5 join DF1Ib join IS_Trans;
-#
-# TS_DF1C := IS_Tinv join DF1C join IS_Trans;
-#
-# TS_DF2I := ex_7_5 join DF2I join IS_Trans;
-#
-# TS_DF2C := IS_Tinv join DF2C join IS_Trans;
-#
-# TS_DF3Ia := ex_7_5 join DF3Ia join IS_Trans;
-#
-# TS_DF3Ib := ex_7_5 join DF3Ib join IS_Trans;
-#
-# TS_DF3C := IS_Tinv join DF3C join IS_Trans;
-#
-#
-#
-# KNOWN := { [] : T >= 0 and N >= 4 };
-#
-#
-# #
-# # multiprocessor version
-# # time skewed iteration space
-# # blocked memory mapping
-# #
-#
-# #
-# # First of all, if 500 is much less than 4000,
-# # there's a problem with the constraints below.
-# # To keep send and recv. slices from "crashing", 4000>=2BS+2 (safe approx?)
-# #
-#
-# assertUnsatisfiable( { [] : 4000 < 2 * 500 + 2 } );
-
-{ FALSE }
-
-#
-#
-# # this transformation has no existentially quantified variables;
-# # basically, it factors out the common stuff below,
-# # but the quantified variables are left in the output, so we can get them
-# # everything after the 000 is not needed in final xform
-#
-# #
-# # DANGER WILL ROBINSON!
-# # the .c file depends on the fact that t4 is always the processor number
-# #
-#
-# MP_TSKEW_ALL := { [2, t, 1, i, 1] ->
-# [2, tb, slice, proc, t+i, tt, 000, t, i, lproc, t0, i0, ie]:
-# ##
-# ## define time block and tt
-# ##
-# 500*tb+tt = t and 0 <= tt < 500
-# ##
-# ## define "logical proc", then "wrap" onto physical later:
-# ## "logical proc" (lproc) = (t-i) div sigma
-# ##
-# and 4000*lproc <= t-i < 4000*(lproc+1)
-# ##
-# ## for uniproc. test, just do proc = -lproc (for multi, proc = lproc % 8)
-# ##
-# and proc = -lproc
-# ##
-# ## t0,i0 = first iteration in a block;
-# ## t0,ie = maximum "i" in t0 of this block)
-# ##
-# and t0=500*tb
-# and t0-ie=4000*lproc
-# and i0+4000-1=ie
-# };
-#
-#
-# #
-# # We need to send things "down" (to same time block of next proc.)
-# # and "right" (to next time block of next proc.)
-# # The "+2" is for the things to send right (not mentioned in IPDPS paper).
-# #
-#
-# MP_TSKEW_SEND_SL := MP_TSKEW_ALL join
-# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
-# [2, tb, 1, proc, t_p_i, tt, 0] :
-# ## define send slice...
-# (t+i) <= (t0+(500-2) + i0+(500-1) + 2)
-# };
-#
-#
-# MP_TSKEW_SEND_ME := MP_TSKEW_ALL join
-# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
-# [2, tb, 2, proc, t_p_i, tt, 0] :
-# ## in the send slice
-# (t+i) <= (t0+(500-2) + i0+(500-1) + 2)
-# ## and near the (t-i) border:
-# and (t-i) >= ((t0-i0)-1)
-# };
-#
-#
-# MP_TSKEW_COMP_SL := MP_TSKEW_ALL join
-# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
-# [2, tb, 3, proc, t_p_i, tt, 0] :
-# ## define computation slice...
-# ## not send
-# (t+i) > (t0+(500-2) + i0+(500-1) + 2)
-# ## and not recv
-# and (t+i) <= (t0+ie)
-# };
-#
-#
-#
-#
-# # Receive the iterations that we sent,
-# # but after the calculation,
-# # and on the neighbor (lower) processor
-#
-# MP_TSKEW_R_FROM_ME := MP_TSKEW_SEND_ME join
-# { [2, tb, 2, proc, t_p_i, tt, 0] ->
-# [2, tb, 4, proc-1, t_p_i, tt, 0] };
-#
-#
-#
-# MP_TSKEW_RECV_SL := MP_TSKEW_ALL join
-# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
-# [2, tb, 5, proc, t_p_i, tt, 0] :
-# ## define recv slice...
-# (t+i) > (t0+ie)
-# };
-#
-#
-#
-#
-#
-# ## stuff to gather each processor's final results...
-#
-# IS_GATHER := IS_CALC intersection { [2,t,1,i,1] : t=T-1 };
-#
-#
-# GATHER_EXPANDER := MP_TSKEW_ALL join
-# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
-# [3, tb, 7, proc, t_p_i, tt, 0] };
-#
-#
-# ## stuff to initialize things right in the first place
-#
-# ### NOTE THAT t4 (processor #) is used in a loop in initialization
-#
-# IS_INIT_EXP := { [1,t,i,0,0] : (-1=t && 0<=i<=N-1) ||
-# (0<=t<T && 0=i) ||
-# (0<=t<T && N-1=i) };
-#
-#
-#
-# # send_slice + calc_slice + recv slice == total
-#
-# TheSendIS := domain(MP_TSKEW_SEND_SL restrictDomain IS_CALC);
-#
-# TheCompIS := domain(MP_TSKEW_COMP_SL restrictDomain IS_CALC);
-#
-# TheRecvIS := domain(MP_TSKEW_RECV_SL restrictDomain IS_CALC);
-#
-#
-# assertUnsatisfiable(TheSendIS intersection TheCompIS);
-
-{[In_1,t,In_3,i,In_5] : FALSE }
-
-#
-# assertUnsatisfiable(TheCompIS intersection TheRecvIS);
-
-{[In_1,t,In_3,i,In_5] : FALSE }
-
-#
-# assertUnsatisfiable(TheSendIS intersection TheRecvIS);
-
-{[In_1,t,In_3,i,In_5] : FALSE }
-
-#
-# #
-# # These cause inexact negation and thus blow up...
-# #
-# # assertUnsatisfiable(IS_CALC - (TheSendIS union TheCompIS union TheRecvIS));
-# # assertUnsatisfiable((TheSendIS union TheCompIS union TheRecvIS) - IS_CALC);
-#
-#
-#
-# codegen
-# ex_5_7 : IS_INIT_EXP,
-# MP_TSKEW_SEND_SL : IS_CALC,
-# MP_TSKEW_SEND_ME : IS_CALC,
-# MP_TSKEW_COMP_SL : IS_CALC,
-# MP_TSKEW_R_FROM_ME : IS_CALC,
-# MP_TSKEW_RECV_SL : IS_CALC,
-# GATHER_EXPANDER : IS_GATHER
-# given (KNOWN join ex_0_7v);
-for(t3 = 0; t3 <= N-1; t3++) {
- s1(1,-1,t3,0,0);
-}
-for(t2 = 0; t2 <= T-1; t2++) {
- s1(1,t2,0,0,0);
- s1(1,t2,N-1,0,0);
-}
-for(t2 = 0; t2 <= intDiv(T-1,500); t2++) {
- for(t4 = intDiv(-t2+7+7,8); t4 <= intDiv(-500*t2+N+3997,4000); t4++) {
- for(t5 = max(1000*t2+4000*t4-3999,500*t2+1); t5 <= min(1000*t2+4000*t4-3000,N+T-3,2*N-4000*t4+3995); t5++) {
- for(t6 = max(-N+t5-500*t2+2,0); t6 <= min(t5-500*t2-1,T-500*t2-1,intDiv(t5-4000*t4-1000*t2+3999,2)); t6++) {
- s2(2,500*t2+t6,1,t5+-500*t2-t6,1);
- }
- }
- }
- for(t4 = max(intDiv(-T+4000+3999,4000),intDiv(-t2+7+7,8)); t4 <= intDiv(-500*t2+N+3997,4000); t4++) {
- for(t5 = max(1000*t2+4000*t4-3999,-4000*t4+4000); t5 <= min(1000*t2+4000*t4-3000,2*N-4000*t4+3995,2*T+4000*t4-4000); t5++) {
- for(t6 = intDiv(t5-4000*t4-1000*t2+3998+1,2); t6 <= intDiv(t5-4000*t4-1000*t2+3999,2); t6++) {
- s3(2,500*t2+t6,1,t5+-500*t2-t6,1);
- }
- }
- }
- for(t4 = intDiv(-t2+1+7,8); t4 <= min(intDiv(-500*t2+N+3496,4000),intDiv(-1000*t2+N+T+2996,4000)); t4++) {
- for(t5 = max(500*t2+1,4000*t4+1000*t2-2999); t5 <= min(N+T-3,4000*t4+1000*t2,N+500*t2+497); t5++) {
- for(t6 = max(-N+t5-500*t2+2,0); t6 <= min(T-500*t2-1,t5-500*t2-1,499); t6++) {
- s4(2,500*t2+t6,1,t5+-500*t2-t6,1);
- }
- }
- }
- for(t4 = max(intDiv(-T+3999,4000),intDiv(-t2-1+7,8)); t4 <= intDiv(-500*t2+N-3,4000); t4++) {
- for(t5 = max(1000*t2+4000*t4+1,-4000*t4); t5 <= min(1000*t2+4000*t4+1000,2*N-4000*t4-5,2*T+4000*t4); t5++) {
- for(t6 = intDiv(-1000*t2-4000*t4+t5-2+1,2); t6 <= intDiv(-1000*t2-4000*t4+t5-1,2); t6++) {
- s5(2,500*t2+t6,1,t5+-500*t2-t6,1);
- }
- }
- }
- if (500*t2 <= T-2) {
- for(t4 = intDiv(-t2+7,8); t4 <= min(intDiv(-500*t2+N+496,4000),intDiv(-1000*t2+N+T-4,4000)); t4++) {
- for(t5 = max(1000*t2+4000*t4+1,-4000*t4+2); t5 <= min(2*T+4000*t4-2,N+T-3,N+500*t2+497,1000*t2+4000*t4+998); t5++) {
- for(t6 = max(-N+t5-500*t2+2,intDiv(t5-4000*t4-1000*t2+1,2)); t6 <= min(t5-500*t2-1,T-500*t2-1,499); t6++) {
- s6(2,500*t2+t6,1,t5+-500*t2-t6,1);
- }
- }
- }
- }
-}
-if (T >= 1) {
- for(t2 = intDiv(T-500+499,500); t2 <= intDiv(T-1,500); t2++) {
- for(t4 = intDiv(-T+2+3999,4000); t4 <= intDiv(N-T+3998,4000); t4++) {
- for(t5 = max(4000*t4+2*T-4001,T); t5 <= min(4000*t4+2*T-2,N+T-3); t5++) {
- s7(2,T-1,1,t5-T+1,1);
- }
- }
- }
-}
-
-#
-#