#ifndef LOOP_HH #define LOOP_HH #include <omega.h> #include <code_gen/codegen.h> #include <code_gen/CG.h> #include <vector> #include <map> #include <set> #include "dep.hh" #include "ir_code.hh" #include "irtools.hh" class IR_Code; enum TilingMethodType { StridedTile, CountedTile }; enum LoopLevelType { LoopLevelOriginal, LoopLevelTile, LoopLevelUnknown }; // Describes properties of each loop level of a statement. "payload" // for LoopLevelOriginal means iteration space dimension, for // LoopLevelTile means tiled loop level. Special value -1 for // LoopLevelTile means purely derived loop. For dependence dimension // payloads, the values must be in an increasing order. // "parallel_level" will be used by code generation to support // multi-level parallelization (default 0 means sequential loop under // the current parallelization level). struct LoopLevel { LoopLevelType type; int payload; int parallel_level; }; struct Statement { omega::CG_outputRepr *code; omega::Relation IS; omega::Relation xform; std::vector<LoopLevel> loop_level; ir_tree_node *ir_stmt_node; //protonu--temporarily putting this back here //omega::Tuple<int> nonSplitLevels; //end--protonu. }; class Loop { protected: int tmp_loop_var_name_counter; static const std::string tmp_loop_var_name_prefix; int overflow_var_name_counter; static const std::string overflow_var_name_prefix; std::vector<int> stmt_nesting_level_; std::vector<std::string> index; std::map<int, omega::CG_outputRepr *> replace; public: IR_Code *ir; std::vector<omega::Free_Var_Decl*> freevar; std::vector<Statement> stmt; std::vector<ir_tree_node *> ir_stmt; std::vector<ir_tree_node *> ir_tree; DependenceGraph dep; int num_dep_dim; omega::Relation known; omega::CG_outputRepr *init_code; omega::CG_outputRepr *cleanup_code; std::map<int, std::vector<omega::Free_Var_Decl *> > overflow; protected: mutable omega::CodeGen *last_compute_cg_; mutable omega::CG_result *last_compute_cgr_; mutable int last_compute_effort_; protected: bool init_loop(std::vector<ir_tree_node *> &ir_tree, std::vector<ir_tree_node *> &ir_stmt); int get_dep_dim_of(int stmt, int level) const; int get_last_dep_dim_before(int stmt, int level) const; std::vector<omega::Relation> getNewIS() const; omega::Relation getNewIS(int stmt_num) const; std::vector<int> getLexicalOrder(int stmt_num) const; int getLexicalOrder(int stmt_num, int level) const; std::set<int> getStatements(const std::vector<int> &lex, int dim) const; void shiftLexicalOrder(const std::vector<int> &lex, int dim, int amount); void setLexicalOrder(int dim, const std::set<int> &active, int starting_order = 0, std::vector< std::vector<std::string> >idxNames= std::vector< std::vector<std::string> >()); void apply_xform(int stmt_num); void apply_xform(std::set<int> &active); void apply_xform(); std::set<int> getSubLoopNest(int stmt_num, int level) const; public: Loop() { ir = NULL; tmp_loop_var_name_counter = 1; init_code = NULL; } Loop(const IR_Control *control); ~Loop(); omega::CG_outputRepr *getCode(int effort = 1) const; void printCode(int effort = 1) const; void addKnown(const omega::Relation &cond); void print_internal_loop_structure() const; bool isInitialized() const; int num_statement() const { return stmt.size(); } void printIterationSpace() const; void printDependenceGraph() const; void removeDependence(int stmt_num_from, int stmt_num_to); void dump() const; std::vector<std::set <int > > sort_by_same_loops(std::set<int > active, int level); // // legacy unimodular transformations for perfectly nested loops // e.g. M*(i,j)^T = (i',j')^T or M*(i,j,1)^T = (i',j')^T // bool nonsingular(const std::vector<std::vector<int> > &M); // // high-level loop transformations // void permute(const std::set<int> &active, const std::vector<int> &pi); void permute(int stmt_num, int level, const std::vector<int> &pi); void permute(const std::vector<int> &pi); void original(); void tile(int stmt_num, int level, int tile_size, int outer_level = 1, TilingMethodType method = StridedTile, int alignment_offset = 0, int alignment_multiple = 1); std::set<int> split(int stmt_num, int level, const omega::Relation &cond); std::set<int> unroll(int stmt_num, int level, int unroll_amount, std::vector< std::vector<std::string> >idxNames= std::vector< std::vector<std::string> >(), int cleanup_split_level = 0); bool datacopy(const std::vector<std::pair<int, std::vector<int> > > &array_ref_nums, int level, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 4, int memory_type = 0); bool datacopy(int stmt_num, int level, const std::string &array_name, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 4, int memory_type = 0); bool datacopy_privatized(int stmt_num, int level, const std::string &array_name, const std::vector<int> &privatized_levels, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 1, int memory_type = 0); bool datacopy_privatized(const std::vector<std::pair<int, std::vector<int> > > &array_ref_nums, int level, const std::vector<int> &privatized_levels, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 1, int memory_type = 0); bool datacopy_privatized(const std::vector<std::pair<int, std::vector<IR_ArrayRef *> > > &stmt_refs, int level, const std::vector<int> &privatized_levels, bool allow_extra_read, int fastest_changing_dimension, int padding_stride, int padding_alignment, int memory_type = 0); //std::set<int> scalar_replacement_inner(int stmt_num); Graph<std::set<int>, bool> construct_induced_graph_at_level(std::vector<std::set<int> > s, DependenceGraph dep, int dep_dim); std::vector<std::set<int> > typed_fusion(Graph<std::set<int>, bool> g); void fuse(const std::set<int> &stmt_nums, int level); void distribute(const std::set<int> &stmt_nums, int level); void skew(const std::set<int> &stmt_nums, int level, const std::vector<int> &skew_amount); void shift(const std::set<int> &stmt_nums, int level, int shift_amount); void scale(const std::set<int> &stmt_nums, int level, int scale_amount); void reverse(const std::set<int> &stmt_nums, int level); void peel(int stmt_num, int level, int peel_amount = 1); // // more fancy loop transformations // void modular_shift(int stmt_num, int level, int shift_amount) {} void diagonal_map(int stmt_num, const std::pair<int, int> &levels, int offset) {} void modular_partition(int stmt_num, int level, int stride) {} // // derived loop transformations // void shift_to(int stmt_num, int level, int absolute_position); std::set<int> unroll_extra(int stmt_num, int level, int unroll_amount, int cleanup_split_level = 0); bool is_dependence_valid_based_on_lex_order(int i, int j, const DependenceVector &dv, bool before); // // other public operations // void pragma(int stmt_num, int level, const std::string &pragmaText); void prefetch(int stmt_num, int level, const std::string &arrName, int hint); //void prefetch(int stmt_num, int level, const std::string &arrName, const std::string &indexName, int offset, int hint); }; #endif