#ifndef LOOP_HH
#define LOOP_HH

#include <omega.h>
#include <code_gen/codegen.h>
#include <code_gen/CG.h>
#include <vector>
#include <map>
#include <set>
#include "dep.hh"
#include "ir_code.hh"
#include "irtools.hh"

class IR_Code;

enum TilingMethodType { StridedTile, CountedTile };
enum LoopLevelType { LoopLevelOriginal, LoopLevelTile, LoopLevelUnknown };


// Describes properties of each loop level of a statement. "payload"
// for LoopLevelOriginal means iteration space dimension, for
// LoopLevelTile means tiled loop level.  Special value -1 for
// LoopLevelTile means purely derived loop. For dependence dimension
// payloads, the values must be in an increasing order.
// "parallel_level" will be used by code generation to support
// multi-level parallelization (default 0 means sequential loop under
// the current parallelization level).
struct LoopLevel {
  LoopLevelType type;
  int payload;  
  int parallel_level;
};

struct Statement {
  omega::CG_outputRepr *code;
  omega::Relation IS;
  omega::Relation xform;
  std::vector<LoopLevel> loop_level;
  ir_tree_node *ir_stmt_node;
  //protonu--temporarily putting this back here
  //omega::Tuple<int> nonSplitLevels;
  //end--protonu.
};


class Loop {
protected:
  int tmp_loop_var_name_counter;
  static const std::string tmp_loop_var_name_prefix;
  int overflow_var_name_counter;
  static const std::string overflow_var_name_prefix;
  std::vector<int> stmt_nesting_level_;
  std::vector<std::string> index;
  std::map<int, omega::CG_outputRepr *> replace;
  
public:
  IR_Code *ir;
  std::vector<omega::Free_Var_Decl*> freevar;
  std::vector<Statement> stmt;
  std::vector<ir_tree_node *> ir_stmt;
  std::vector<ir_tree_node *> ir_tree;
  DependenceGraph dep;
  int num_dep_dim;
  omega::Relation known;
  omega::CG_outputRepr *init_code;
  omega::CG_outputRepr *cleanup_code;
  std::map<int, std::vector<omega::Free_Var_Decl *> > overflow;
  
  
protected:
  mutable omega::CodeGen *last_compute_cg_;
  mutable omega::CG_result *last_compute_cgr_;
  mutable int last_compute_effort_;
  
protected:
  bool init_loop(std::vector<ir_tree_node *> &ir_tree, std::vector<ir_tree_node *> &ir_stmt);
  int get_dep_dim_of(int stmt, int level) const;
  int get_last_dep_dim_before(int stmt, int level) const;
  std::vector<omega::Relation> getNewIS() const;
  omega::Relation getNewIS(int stmt_num) const;
  std::vector<int> getLexicalOrder(int stmt_num) const;
  int getLexicalOrder(int stmt_num, int level) const;
  std::set<int> getStatements(const std::vector<int> &lex, int dim) const;
  void shiftLexicalOrder(const std::vector<int> &lex, int dim, int amount);
  void setLexicalOrder(int dim, const std::set<int> &active, int starting_order = 0, std::vector< std::vector<std::string> >idxNames= std::vector< std::vector<std::string> >());
  void apply_xform(int stmt_num);
  void apply_xform(std::set<int> &active);
  void apply_xform();
  std::set<int> getSubLoopNest(int stmt_num, int level) const;
  
  
public:
  Loop() { ir = NULL; tmp_loop_var_name_counter = 1; init_code = NULL; }
  Loop(const IR_Control *control);
  ~Loop();
  
  omega::CG_outputRepr *getCode(int effort = 1) const;
  void printCode(int effort = 1) const;
  void addKnown(const omega::Relation &cond);
  void print_internal_loop_structure() const;
  bool isInitialized() const;
  int num_statement() const { return stmt.size(); }
  void printIterationSpace() const;
  void printDependenceGraph() const;
  void removeDependence(int stmt_num_from, int stmt_num_to);
  void dump() const;
  
  std::vector<std::set <int > > sort_by_same_loops(std::set<int > active, int level);
  //
  // legacy unimodular transformations for perfectly nested loops
  // e.g. M*(i,j)^T = (i',j')^T or M*(i,j,1)^T = (i',j')^T
  //
  bool nonsingular(const std::vector<std::vector<int> > &M);
  
  //
  // high-level loop transformations
  //
  void permute(const std::set<int> &active, const std::vector<int> &pi);
  void permute(int stmt_num, int level, const std::vector<int> &pi);
  void permute(const std::vector<int> &pi);
  void original();
  
  void tile(int stmt_num, int level, int tile_size, int outer_level = 1, TilingMethodType method = StridedTile, int alignment_offset = 0, int alignment_multiple = 1);
  std::set<int> split(int stmt_num, int level, const omega::Relation &cond);
  std::set<int> unroll(int stmt_num, int level, int unroll_amount, std::vector< std::vector<std::string> >idxNames= std::vector< std::vector<std::string> >(), int cleanup_split_level = 0);
  
  bool datacopy(const std::vector<std::pair<int, std::vector<int> > > &array_ref_nums, int level, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 4, int memory_type = 0);
  bool datacopy(int stmt_num, int level, const std::string &array_name, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 4, int memory_type = 0);
  bool datacopy_privatized(int stmt_num, int level, const std::string &array_name, const std::vector<int> &privatized_levels, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 1, int memory_type = 0);
  bool datacopy_privatized(const std::vector<std::pair<int, std::vector<int> > > &array_ref_nums, int level, const std::vector<int> &privatized_levels, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 1, int memory_type = 0);
  bool datacopy_privatized(const std::vector<std::pair<int, std::vector<IR_ArrayRef *> > > &stmt_refs, int level, const std::vector<int> &privatized_levels, bool allow_extra_read, int fastest_changing_dimension, int padding_stride, int padding_alignment, int memory_type = 0);
  //std::set<int> scalar_replacement_inner(int stmt_num);
  
  
  
  Graph<std::set<int>, bool> construct_induced_graph_at_level(std::vector<std::set<int> > s, DependenceGraph dep, int dep_dim);
  std::vector<std::set<int> > typed_fusion(Graph<std::set<int>, bool> g);
  void fuse(const std::set<int> &stmt_nums, int level);
  void distribute(const std::set<int> &stmt_nums, int level);
  void skew(const std::set<int> &stmt_nums, int level, const std::vector<int> &skew_amount);
  void shift(const std::set<int> &stmt_nums, int level, int shift_amount);
  void scale(const std::set<int> &stmt_nums, int level, int scale_amount);
  void reverse(const std::set<int> &stmt_nums, int level);
  void peel(int stmt_num, int level, int peel_amount = 1);
  //
  // more fancy loop transformations
  //
  void modular_shift(int stmt_num, int level, int shift_amount) {}
  void diagonal_map(int stmt_num, const std::pair<int, int> &levels, int offset) {}
  void modular_partition(int stmt_num, int level, int stride) {}
  
  //
  // derived loop transformations
  //
  void shift_to(int stmt_num, int level, int absolute_position);
  std::set<int> unroll_extra(int stmt_num, int level, int unroll_amount, int cleanup_split_level = 0);
  bool is_dependence_valid_based_on_lex_order(int i, int j,
			const DependenceVector &dv, bool before);
  //
  // other public operations
  //
  void pragma(int stmt_num, int level, const std::string &pragmaText);
  void prefetch(int stmt_num, int level, const std::string &arrName, int hint);
  //void prefetch(int stmt_num, int level, const std::string &arrName, const std::string &indexName, int offset, int hint);
};


#endif