
CHiLL
The Composable High Level Loop Source-to-Source Translator

For version 0.2.1, September 2015

This manual describes CHiLL (version 0.2.1 September 2015), a source-to-source translator
for optimizing loop based calculations.

Copyright c© 2008 University of Southern California
Copyright c© 2009-2015 University of Utah

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 published by the Free Software Founda-
tion. To receive a copy of the GNU Free Documentation License, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.

Published by the University of Utah School of Computing
Compiler Technology to Optimize Performance Research Group
ctop.cs.utah.edu/ctop/

50 S., Central Campus Dr., Salt Lake City, UT 84112

i

Table of Contents

1 Introduction . 1

1.1 Intended Audience . 1
1.2 Getting CHiLL . 1
1.3 Invoking CHiLL . 1

2 Background . 3

2.1 Iteration Vectors . 3
2.2 Iteration Spaces . 4
2.3 Dependences . 5
2.4 Dependences with loops and arrays . 5
2.5 Distance Vectors . 6
2.6 Direction Vectors . 7
2.7 Legality of Transformations . 7

3 The CHiLL Scripting Language 8

3.1 Loop and Statement Identification . 8
3.2 Commands . 9
3.3 Transformations . 10

Distribute . 10
Fuse . 11
Nonsingular . 12
Peel . 13
Permute . 14
Reverse . 15
Scale . 16
Shift . 17
Shift to . 18
Skew . 19
Split . 20
Tile . 21
Unroll . 22

Concept Index . 23

Function and Transformation Index 24

Chapter 1: Introduction 1

1 Introduction

CHiLL is a source-to-source translator for composing high level loop transformations to
improve the performance of nested loop calculations written in C, C++ or Fortran. CHiLL’s
operations are driven by a script which is generated or supplied by the user that specifies the
location of the original source file, the function and loops to modify and the transformations
to apply. CHiLL can be configured to include support for the NVIDIA CUDA compiler. In
this mode, CHiLL can generate source code for both host functions and device functions to
be compiled and executed on NVIDIA GPUs.

1.1 Intended Audience

This manual is intended for C/C++ or Fortran programmers wishing to optimize loop based
calculations. The user should have sufficient knowledge of the underlying hardware on which
the code should execute to generate an optimization strategy.

1.2 Getting CHiLL

CHiLL is available in source form from https://github.com/CtopCsUtahEdu and re-
quires the ROSE compiler from Lawrence Livermore National Laboratory (see http://

rosecompiler.org)1. When ROSE is available CHiLL can be installed and tested by
executing the following commands in the source direcory.

./configure --with-interface=python --prefix=<INSTALLDIR> \

--with-rose=<ROSEINSTALLDIR> --with-boost=<BOOSTINSTALLDIR>

make -j‘nproc‘

make -j‘nproc‘ install

cd test-chill; ./runtests

If you have problems with installation, find bugs or have comments, questions or sug-
gestions for this document, please send mail to chill-support@cs.utah.edu.

1.3 Invoking CHiLL

The C program below is an implementation of matrix multiplication as a direct translation
of an optimized Fortran program where all of the loops are ordered such that memory
accesses to the arrays a, b and c are all in column order. Since C stores arrays in row major
order there is an opportunity for better cache utilization if the arrays are accessed as rows
and not columns. We will refer to this code often and assume it is in a file named mm.c.

void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}

1 Building ROSE requires very specific versions of GNU autoconf, gcc and the boost libraries. If you
do not have ROSE installed then please see and modify the script buildall which was used to install
CHiLL on Blue Waters at NCSA.

Chapter 1: Introduction 2

Permuting the order of the loops from i, j, n to n, j, i results in the more cache centric
C algorithm as shown below where all array accesses are in row major order.

void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, k;

for (n = 0; n <= ambn - 1; n += 1)

for (j = 0; j <= bm - 1; j += 1)

if (n <= 0)

for (i = 0; i <= an - 1; i += 1) {

C[i][j] = 0.0f;

C[i][j] += (A[i][n] * B[n][j]);

}

else

for (i = 0; i <= an - 1; i += 1)

C[i][j] += (A[i][n] * B[n][j]);

}

The interchanges of the outer and innermost loops can be done in CHiLL with this
simple Python script.

from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

permute([3,2,1])

print_code()

The first line of the script ‘from chill import *’ loads the CHiLL interface into the
python interpreter. The commands source and procedure identify the source file and the
procedure to modify. The loop command specifies the loop nest to be transformed. The
known command specifies constraints on parameters that are known and the transforma-
tion ‘permute([3,2,1])’ exchanges the inner and outermost loops. Finally the command
print_code prints the transformed loop nest in a C-like pseudo code showing the loops,
indices and statements.

Assuming for this example that that the script above is in the file mm.py, the command
‘chill mm.py’ would print to stdout pseudo code similar to that shown below and produce
the transformed code in the file rose_mm.c1

for(n = 0; n <= ambn-1; n++)

for(j = 0; j <= bm-1; j++)

if (n <= 0)

for(i = 0; i <= an-1; i++) {

s0(i,j,n);

s1(i,j,n);

}

else

for(i = 0; i <= an-1; i++)

s1(i,j,n);

1 The code produced by the current version of CHiLL does not preserve loop variables names in the
transformed code which makes it difficult to see the effects of a transformation. In this manual we have
used the original loop variable names in the generated code to make it easier to understand.

Chapter 2: Background 3

2 Background

Before CHiLL applies a user specified transformation to the loop structure it first insures
that the transformed code will produce the same results as the original code. It does this by
determining all dependences between statements in the original program and then requiring
that any and all transformations that are applied preserve the dependences between the
statements in the original code.

Conceptually CHiLL treats each statement in a source program as one of three basic
types; a loop, a conditional or a statement. When we refer to “a statement” in CHiLL,
we are referring to a block of one or more actual program statements which have a single
uninterrupted execution path through them and we notationally represent it as a function
which is passed the values of the indices of all loops enclosing it.

For each statement we compute an iteration vector that encodes the the absolute exe-
cution order of the statement as a function of its lexical position in the source code and the
index values of the enclosing loops. We then define the iteration space for the statement by
joining the iteration vector with the constraints on each index that is in an enclosing loop.

Next we analyze the memory access patterns of the statements and loops. We compute
the set of dependences by taking all statements pair-wise and finding those pairs of state-
ments (S1, S2) where there exists an iteration vector i1 and i2 in the respective iteration
spaces of S1 and S2 such that S1(i1) and S2(i2) both refer to the same memory location and
one or both of them write to that location. The distance vector defined by i2 − i1 gives the
execution distance from the source statement S1 to the sink statement S2.

If a dependence exists between statements S1 and S2 with the constraint that S1 must
execute before S2 in the original code then that constraint must be preserved across any and
all transformations. If a dependence exists that can not be preserved across a transformation
then CHiLL alerts the user to this problem. Dependence information between S1 and S2 is
maintained by a dependence vector which encapsulates the notion of all the distance vectors
where statement S1 must execute before S2.

The diagnostic commands print_space and print_dep will print the iteration space
of each statement and the dependences between all pairs of statements. The command
remove_dep will force the removal of a dependence leaving responsibility for the correctness
of the transformation to the user.

2.1 Iteration Vectors

Given a loop nest with a maximum loop depth of n, we define for each executed statement
an iteration vector that encodes the time of execution of a statement executed with specific
values for the loop indices which enclose the statement. This allows us to determine the
relative order of execution of any two statements so that dependences between statements
can be preserved.

We define an iteration vector for a nest of n loops as i = {c0, l1, c1, l2, ..., cn, ln, cn+1}
where lk is the value of the index1 of the loop at nesting level k and ck is an auxiliary loop
used to track the lexigraphical ordering of statement executed within the loop nested at level

1 with a suitable transformation such that the index is monotonically increasing as the loop progresses

Chapter 2: Background 4

k. The outermost loop level in the nest is 1 and c0 lexigraphically orders any statements
that precede the first loop.

At this level of abstraction we only care about loops and blocks of code between loops.
The even numbered elements {c0, c1, ..., cn+1} are always constant integers that describe the
static lexigraphical ordering of the statements in the original code. The odd numbered
elements {l1, ..., ln} represent the current values of the loop levels. This scheme allows
a uniform method to both track both the progression of the loop indices as well as the
execution order of statements within each loop.

Iteration vectors are ordered and thus can be used to enforce dependences between
statements. Iteration vector i precedes iteration j, denoted i < j, if and only if i[1 : n−1] <
j[1 : n− 1] or i[1 : n− 1] = j[1 : n− 1] and i[n] < j[n].

Given two statements S0 which executes at a time specified by iteration vector i0 and a
statement S1 which executes at a time specified by iteration vector i1, then the execution
of S0 precedes that of S1 if and only if i0 < i1.

2.2 Iteration Spaces

Consider the following loop nest below. There are three loop levels to track the three indices
i, j and k and four auxiliary loop levels to track the relative execution of the statements
within the loops.

S0

for (i ...) {

S1

S2

for (j ...) {

S3

for (k ...) {

S4

}

S5

}

S6

}

An iteration space is is a set of iteration vectors. It is usually specified in set notation
with one or more values of l specified as an integer variable along with constraints on the
variables. The iteration space for each statement is shown below as a set of integer tuples.
In practice, the upper and lower bounds of each loop index would be specified in each set
condition as well.

S0 : {[0, 0, 0, 0, 0, 0, 0]}
S1 : {[1, i, 0, 0, 0, 0, 0]}
S2 : {[1, i, 1, 0, 0, 0, 0]}
S3 : {[1, i, 2, j, 0, 0, 0]}
S4 : {[1, i, 2, j, 1, k, 0]}
S5 : {[1, i, 2, j, 2, 0, 0]}
S6 : {[1, i, 3, 0, 0, 0, 0]}

If we were were told that the current point of execution of the above loop nest was
described by the iteration vector [1, 3, 2, 6, 2, 0, 0] we would know that statement S5 was
executing with the indices of the loops being i = 3 and j = 6.

Chapter 2: Background 5

The print_space command will print the iteration space for every statement (or block
of statements). For example print_space applied to the following code.

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

gives the following results.

s0: {Sym=[bm,an,ambn] [t1,t2,t3,t4,t5,t6,t7] : t1=0 && t3=0 && t5=0 &&

t7=0 && t6=0 && 0<=t2<an && 0<=t4<bm && 1<=ambnyes }

s1: {Sym=[ambn,bm,an] [t1,t2,t3,t4,t5,t6,t7] : t1=0 && t3=0 && t5=0 &&

t7=0 && 0<=t2<an && 0<=t6<ambn && 0<=t4<bm }

2.3 Dependences

There are two general categories of dependences, control dependences and data dependences.

A control dependence exist when one statement is executed conditionally on the result
of another. For example, in the statements below S1 cannot be executed before S0 and thus
S1 has a control dependence on S0.

S0 if (x != 0)

S1 a /= x;

A data dependence exists between statements S0 and S1 (meaning S1 depends on state-
ment S0) if and only if there is a plausible run-time execution path from S0 to S1, both
statements access the same memory location and at least one of them stores to it. There
are three types of data dependences:

A true dependence exists when S0 writes to a location that is later read by S1.
S0 x = ...

S1 ... = x

An antidependence exists when S0 reads from a location that is later written to by S1.
S0 ... = x

S1 x = ...

An output dependence exists when S0 writes to a location that is later written to by S1.
S0 x = ...

S1 x = ...

In the parlance of hardware design, a true dependence is known as a RAW (read after
write) hazard, an antidependence is a WAR (write after read) hazard and an output depen-
dence is a WAW (write after write) hazard. These dependences are fairly intuitively and
are used instinctively by every programmer to determine the correct order of statements in
sequential code. However, when loops and arrays are involved these same data dependences
arise in more subtle ways.

2.4 Dependences with loops and arrays

It is useful to categorize data dependences in loops into two types. Consider a loop that
contains two statements call them S0 and S1. If both S0 and S1 reference the same mem-
ory location within the same iteration as they do in this case, then the dependence is

Chapter 2: Background 6

loop-independent. If statement S0 and S1 reference the same memory location in different
iterations, then the dependence is created by the loop and it is said to be loop-carried.

As an example the loop below which has two loop-carried dependences and two loop-
independent dependences.

for (i = 0; i < n; i++) {

S0 a[i + 1] = b[i];

S1 b[i + 1] = a[i];

S2 c[i] = a[i] + b[i];

}

In every iteration other than the first, S1 reads an element of a[] that was written to
by S0 in the previous iteration and thus there is dependence from S0 to S1. Because S0

appears before S1 in the loop, it is a loop-carried forward true dependence.

Likewise, for every iteration other than the first, S0 uses a value of b[] that was written
by S1 in the previous iteration and thus there is also a dependence from S1 to S0 but because
S1 appears after S0 in the loop, it is a loop-carried backward true dependence.

Finally S2 reads a value of a[] that was written by S0 and a value of b[] that was written
by S1 in the same iteration and thus there are two loop-independent true dependence, one
is S2 on S0 and the other is of S2 on S1.

2.5 Distance Vectors

Given two statements S1 and S2 with iteration vector i1 and i2 respectively where S2 depends
on S1 we define the distance vector d of the dependence as follows. Let

i1 = {c′0, l′1, c′1, l′2, ..., c′n, l′n, c′n+1} and

i2 = {c0, l1, c1, l2, ..., cn, ln, cn+1}

then we define the distance vector as

d = {l1 − l′1, l2 − l′2, ..., ln − l′n}.

The only statement in the nested loop below has a loop-dependent dependence with
itself.

for(i = 0; i < 2 * n; i++)

for (j = 1; j < m; j++)

a[i+1][j-1] = a[i][j] + b[i][j];

The right hand side of the assignment reads array a at iteration vector iR below and the
left hand side of the assignment writes to the same location of the array at the iteration
vector iW .

iR = {0, i, 0, j, 0}
iW = {0, i+ 1, 0, j − 1, 0}.

Because iR < iW this is a read/write dependence and the distance vector is

d = iW − iR = {1, −1}.

The command print_dep applied to this loop yields ‘s0->s0: a:true(1, -1)’

Chapter 2: Background 7

2.6 Direction Vectors

In the same way that an iteration space is a set of iteration vectors, a direction vector is a
summarization of a set of distance vectors between two statements.

In the matrix multiplication loop nest below, statement S0 initializes the value of C[i][j]
and statement S1 accumulates the inner product into it. S1 has multiple dependences on
S0 as the initialization must occur before every accumulation statement S1 executed in the
loop.

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

S0 C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

S1 C[i][j] += A[i][n] * B[n][j];

}

In general, given a nest with n loops each direction vector has the form (d1, d2, . . . , dn)
where The value of di indicates the range of distances between the source and sink carried
by loop i and is one of the following symbols below where n, nl and nu represent integer
values in the iteration space of the loop.

Symbol Lower Bound Upper Bound

n n n

nl∼nu nl nu

∗ −∞ +∞
− −∞ −1
n− −∞ n

+ 1 +∞
n+ n +∞

Notice that neither the symbols + nor − includes the value of 0. The reason is that a
distance of 0 means that the dependence is not loop-carried which CHiLL likes to separate
from dependences that are loop-carried. This is shown below with output of the command
print_dep on the above code.

s0->s1: C:true(0,0,+) C:true(0,0,0) C:output(0,0,+) C:output(0,0,0)

s1->s1: C:anti(0,0,+) C:output(0,0,+)

2.7 Legality of Transformations

From the definition of an iteration vector it is clear that transformations that permute the
loop structure also permute the iteration vector and distance vectors of all dependences in
exactly the same way. Because the distance vector is the distance from the source to the
sink, any permutation of the loop structure that causes the permuted distance vector to be
negative is illegal as the transformation has caused the sink to execute before the source.

Looking at the transformed elements of an iteration vector or distance vector from left
to right (or outer loop to inner loop), if the first non-zero loop element is negative, then the
distance vector is negative and the transformation is illegal.

Chapter 3: The CHiLL Scripting Language 8

3 The CHiLL Scripting Language

3.1 Loop and Statement Identification

The first two commands in every CHiLL script identify the source file and the procedure to
modify. Only one source file and one procedure can be modified in any single script.

Individual loops within a loop nest are identified by the level that they are nested and
the statement that they surround. The outermost loop of a nest is always loop level 1.
Thus in the introductory example, the transformation ‘permute([3,2,1])’ exchanged the
inner and outermost loops.

It is very important to realize that every transformation has the capability to insert or
reorder the loops and thus the identification of a specific loop will change after a transfor-
mation. In the example referenced above the j, k and i loops that were respectively at levels
1, 2 and 3 before the permutation are now at levels 3, 2 and 1 after the transformation.
Any subsequent transformation must use these new loop levels to identify the individual
loops.

Consider the pseudo code below.
for (i ...) {

S0

for (j ...) {

S1

for (k ...)

S2

}

for (j ...)

S3

}

The loop level alone insufficient to uniquely determine a specific loop within a nest unless
a statement enclosed by the loop is also provided. Statements are initially numbered in the
order they appear from top to bottom in the nest starting with zero. Transformations may
also insert or reorder the statements in the nest but the identification of a specific statement
will not change after a transformation.

Chapter 3: The CHiLL Scripting Language 9

3.2 Commands

[Command]source (string filename)
The source command specifies the filename of the original code to be transformed.
There can only be one source command in a script and it must precede the loop

command.

[Command]procedure (string name)
The procedure command specifies the procedure name in the file to transform. There
can only be one procedure modified in a given script.

[Command]loop (int level)
[Command]loop (int start, int end)

The loop command specifies the loop nest to be transformed by specifying the top
level loop of the nest. The first form of the command selects a nest contained in a
single top level loop. The second form takes a range of top level loops and treats
them as a single unified nest.

Top level loops are those loops at procedure scope and are numbered starting from
zero. Once a loop nest is selected by the loop command the outermost loop of the
nest is numbered from one.

The loop command can be issued multiple times in a script to select and modify
different top level loops within the same file.

[Command]print_code ()
The print code commands display C-like pseudo code of the nest showing the loops,
indices and statements. Statements in the pseudo-code appears as a function indexed
by the loop indices as if it were a call to the block of code.

[Command]print_dep ()
The print_dep command displays the dependences between all statements in the
current nest. Given a nest with n loops each individual dependence has the form:

var:type(d1, d2, . . . , dn)

where var is the variable name that is creating the dependence, type is the type of
dependence which is one of quasi, true, anti, output, input, control or unknown.

The value of di indicates the distance or range of distances where a dependence exists
between the source and sink carried by loop i.

[Command]print_space ()
The print_space command displays the iteration space for each statement in the
current nest.

[Command]exit ()
The exit command exists the script.

[Command]known (string cond)
The known command adds a condition as an expression. The value of cond can be a
string or a list of strings.

[Command]remove_dep (int stmt1, int stmt2)
The remove_dep removes a dependence between two statements in the loop nest.

Chapter 3: The CHiLL Scripting Language 10

3.3 Transformations

Distribute

[Transform]distribute (set<int> stmts, int loop)
Distribute the set of statements in stmts such that each statement executes under its
own clone of the common loop structure down to and including level loop.

The transformation is legal if and only if, all loop-carried dependences between the
statements in stmts are contained entirely to loop levels less than loop.

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

distribute([0,1], 1)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

s0(t2,t4,0);

}

}

for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

for(t6 = 0; t6 <= ambn-1; t6++) {

s1(t2,t4,t6);

}

}

}
✡ ✠

Transformed code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1)

C[i][j] = 0.0f;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1)

for (n = 0; n <= ambn - 1; n += 1)

C[i][j] += (A[i][n] * B[n][j]);

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 11

Fuse

[Transform]fuse (set<int> stmts, int loop)
Fuse the set of statements in stmts such that all statement executes under the common
loop structure down to and including level loop.

Python Script
☛ ✟
from chill import *

source(’dist.c’)

procedure(’mm’)

loop(0, 1)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

fuse([0,1], 1)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1)

C[i][j] = 0.0f;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1)

for (n = 0; n <= ambn - 1; n += 1)

C[i][j] += (A[i][n] * B[n][j]);

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

s0(t2,t4,0);

s1(t2,t4,0);

for(t6 = 1; t6 <= ambn-1; t6++) {

s1(t2,t4,t6);

}

}

}
✡ ✠

Transformed code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1) {

C[i][j] = 0.0f;

C[i][j] += (A[i][0] * B[0][j]);

for (n = 1; n <= ambn - 1; n += 1)

C[i][j] += (A[i][n] * B[n][j]);

}

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 12

Nonsingular

[Transform]nonsingular (matrix transform)
The nonsingular transformation applies a unimodular or nonunimodular transfor-
mation on a perfect loop nest. The only requirement for the matrix is that it be
invertible. All statements in the loop nest are effected by the transformation.

Given a perfect loop nest of depth n, with original iteration indexes i and an n x n

transformation matrix T , a new set of index vectors i′ is formed as i′ = Ti. If the
transformation matrix T is an n x n+ 1 matrix, the last column vector is a constant
shift as shown below.

i′1
i′2
...
i′n

=

t11 t12 . . . t1n c1,n+1

t21 t22 . . . t2n c2,n+1

...
...

. . .
...

...
tn1 tn2 . . . tnn cn,n+1

i1
i2
...
in
1

This transform has the ability to simultaneously compose the transforms of permu-
tation, skew, reverse and shift. For example ...

0 0 1
1 0 0
0 1 0

 is equivalent to permute(. . ., [3,1,2])

1 0 0
1 1 0
0 0 1

 is equivalent to skew(. . ., 2, [1,1,0])

1 0 0
0 −1 0
0 0 1

 is equivalent to reverse(. . ., 2)

1 0 0 0
0 1 0 4
0 0 1 0

 is equivalent to shift(. . ., 2, 4)

The difference between nonsingular and permute, skew, reverse and shift is that
nonsingular can apply combinations of all of the above transformations simultane-
ously but it must be applied to all statements in the nest. The individual transfor-
mations accept a set of statements depicted above with “. . . ”.

Python stores arrays in row major order (like C and unlike Fortran) so

the array

1 0 0 0
0 1 0 4
0 0 1 0

 is written as [[1,0,0,0],[0,1,0,4],[0,0,1,0]].

Chapter 3: The CHiLL Scripting Language 13

Peel

[Transform]peel (int stmt, int loop, int amount = 1)
The peel transformation unrolls a specified number of iterations of a statement from
the beginning or the end of a loop at level loop.

If amount is positive then statements are peeled from the start of the loop, if negative
then the statements are peeled from the end.

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 4’, ’an > 0’, ’bm > 0’])

peel(1,3,4)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

s2(t2,t4,0);

s3(t2,t4,0);

s4(t2,t4,1);

s5(t2,t4,2);

s6(t2,t4,3);

for(t6 = 4; t6 <= ambn-1; t6++) {

s1(t2,t4,t6);

}

}

}
✡ ✠

Transformed code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1) {

C[i][j] = 0.0f;

C[i][j] += (A[i][0] * B[0][j]);

C[i][j] += (A[i][1] * B[1][j]);

C[i][j] += (A[i][2] * B[2][j]);

C[i][j] += (A[i][3] * B[3][j]);

for (n = 4; n <= ambn - 1; n += 1)

C[i][j] += (A[i][n] * B[n][j]);

}

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 14

Permute

The permute transformation interchanges the loops of a loop nest.

[Transform]permute (vector<int> p)
[Transform]permute (set<int> stmts, vector<int> p)

The loop nest to permute is specified by the statements in the set stmts. The loops
in the nest are permuted according to the permutation vector p.

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

permute([3,1,2])

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= ambn-1; t2++) {

for(t4 = 0; t4 <= an-1; t4++) {

if (t2 <= 0) {

for(t6 = 0; t6 <= bm-1; t6++) {

s0(t4,t6,t2);

s1(t4,t6,t2);

}

}

else {

for(t6 = 0; t6 <= bm-1; t6++) {

s1(t4,t6,t2);

}

}

}

}
✡ ✠

Transformed code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (n = 0; n <= ambn - 1; n += 1)

for (i = 0; i <= an - 1; i += 1)

if (n <= 0)

for (j = 0; j <= bm - 1; j += 1) {

C[i][j] = 0.0f;

C[i][j] += (A[i][n] * B[n][j]);

}

else

for (j = 0; j <= bm - 1; j += 1)

C[i][j] += (A[i][n] * B[n][j]);

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 15

Reverse

[Transform]reverse (set<int> stmts, int level)
The reverse transformation changes the direction of the iteration through the loop
and is a shortcut for the transformation scale(stmts, level, -1).

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

distribute([0,1],1)

reverse([1],1)

reverse([1],2)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

s0(t2,t4,0);

}

}

for(t2 = -an+1; t2 <= 0; t2++) {

for(t4 = -bm+1; t4 <= 0; t4++) {

for(t6 = 0; t6 <= ambn-1; t6++) {

s1(-t2,-t4,t6);

}

}

}
✡ ✠

Transformed code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1)

C[i][j] = 0.0f;

for (i = -an + 1; i <= 0; i += 1)

for (j = -bm + 1; j <= 0; j += 1)

for (n = 0; n <= ambn - 1; n += 1)

C[-i][-j] += (A[-i][n] * B[n][-j]);

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 16

Scale

[Transform]scale (set<int> stmts, int loop, int amount)
The scale transformation multiplies the index variable for the loop at level loop by
amount and is a shortcut for the transformation skew(stmts, loop, [0, . . . , 0, amount]).

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

distribute([0,1],1)

scale([1],1,4)

scale([1],2,4)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

s0(t2,t4,0);

}

}

for(t2 = 0; t2 <= 4*an-4; t2 += 4) {

for(t4 = 0; t4 <= 4*bm-4; t4 += 4) {

for(t6 = 0; t6 <= ambn-1; t6++) {

s1(t2/4,t4/4,t6);

}

}

}
✡ ✠

Transformed code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1)

C[i][j] = 0.0f;

for (i = 0; i <= 4 * an - 4; i += 4)

for (j = 0; j <= 4 * bm - 4; j += 4)

for (n = 0; n <= ambn - 1; n += 1)

C[i/4][j/4] += A[i/4][n]*B[n][j/4];

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 17

Shift

[Transform]shift (set<int> stmts, int loop, int amount)
The shift transformation adjusts the index of the loop at level loop by adding amount

to what the the non transformed index would be and then subtracting amount from
the index when it is used by statements in stmts. The aim of this transformation is
to add a constant offset to the index used when executing selected statements and it
is accomplishes by either adjusting the staring point of the loop or using conditionals
when there are statements in the loop that are not in stmts.

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

shift([1],1,4)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= an+3; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

if (an >= t2+1) {

s0(t2,t4,0);

if (t2 >= 4) {

s1(t2-4,t4,0);

}

if (t2 >= 4) {

for(t6 = 1; t6 <= ambn-1; t6++) {

s1(t2-4,t4,t6);

}

}

}

else {

if (t2 >= 4) {

for(t6 = 0; t6 <= ambn-1; t6++) {

s1(t2-4,t4,t6);

}

}

}

}

}
✡ ✠

Transformed code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 0; i <= an + 3; i += 1)

for (j = 0; j <= bm-1; j += 1)

if (i + 1 <= an) {

C[i][j] = 0.0f;

if (4 <= i)

C[i-4][j] += A[i-4][0]*B[0][j];

if (4 <= i)

for (n = 1; n <= ambn-1; n += 1)

C[i-4][j] += A[i-4][n]*B[n][j];

}

else if (4 <= i)

for (n = 0; n <= ambn-1; n += 1)

C[i-4][j] += A[i-4][n]*B[n][j];

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 18

Shift to

[Transform]shift_to (int stmt, int loop, int amount)
The shift_to transformation adjusts the index of the loop at level loop by adding
amount to the upper and lower bounds of the loop and then subtracting amount from
every statement within the same loop structure as stmt.

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

shift_to(1,1,4)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 4; t2 <= an+3; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

s0(t2-4,t4,0);

s1(t2-4,t4,0);

for(t6 = 1; t6 <= ambn-1; t6++) {

s1(t2-4,t4,t6);

}

}

}
✡ ✠

Transformed code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 4; i <= an + 3; i += 1)

for (j = 0; j <= bm-1; j += 1) {

C[i-4][j] = 0.0f;

C[i-4][j] += A[i-4][0]*B[0][j];

for (n = 1; n <= ambn-1; n += 1)

C[i-4][j] += A[i-4][n]*B[n][j];

}

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 19

Skew

[Transform]skew (set<int> stmts, int loop, vector<int> amount)
The skew transformation changes the index variable of the loop at level loop to be
a linear combination of the indexes that are less than or equal to the level being
transformed.

Let i1, i2, . . . , iloop be the original loop indexes and let amount = (a1, a2, . . . , aloop).

The new index i′loop will be
loop
∑

l=1

alil.

The example below takes an algorithm with a negative loop-carried dependence and trans-
forms it into one without a dependence.

Python Script
☛ ✟
from chill import *

source(’skew.c’)

procedure(’f’)

loop(0)

known([’n > 0’, ’m > 1’])

print_code()

print_dep()

skew([0], 2, [1, 1])

print_code()

print_dep()

✡ ✠

Original code
☛ ✟
void f(float **a, int n, int m) {

int i, j;

for (i = 1; i < n; i++)

for (j = 0; j < m; j++)

a[i][j] = a[i-1][j+1] + 1;

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 1; t2 <= n-1; t2++) {

for(t4 = 0; t4 <= m-1; t4++) {

s0(t2,t4);

}

}

dependence graph:

s0->s0: a:true(1, -1)

for(t2 = 1; t2 <= n-1; t2++) {

for(t4 = t2; t4 <= t2+m-1; t4++) {

s0(t2,-t2+t4);

}

}

dependence graph:

s0->s0: a:true(1, 0)

✡ ✠

Transformed code
☛ ✟
void f(float **a,int n,int m)

{

int i, j;

for (i = 1; i < n; i += 1)

for (j = i; j < i + m; j += 1)

a[i][j-i] = (a[i-1][j-i+1]+1);

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 20

Split

[Transform]split (int stmt, int loop, int expr)
The split transformation divides the iteration space of the loop at level loop using
the condition specified in expr for the statement in stmt.

The condition in expr can refer to the value of the iteration of the loop nested at level
n as “L<n>”. Only one expression is allowed and it may not contain logical operators
and/or or multiple formulas.

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known(’ambn > 0’)

known(’an > 0’)

known(’bm > 10’)

split(1, 2, "L2 < 5")

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= 4; t4++) {

s0(t2,t4,0);

s1(t2,t4,0);

for(t6 = 1; t6 <= ambn-1; t6++) {

s1(t2,t4,t6);

}

}

for(t4 = 5; t4 <= bm-1; t4++) {

s2(t2,t4,0);

s3(t2,t4,0);

for(t6 = 1; t6 <= ambn-1; t6++) {

s3(t2,t4,t6);

}

}

}
✡ ✠

Transformed code
☛ ✟
#define __rose_lt(x,y) ((x)<(y)?(x):(y))

void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for (i = 0; i <= an - 1; i += 1) {

for (j=0; j<=__rose_lt(4,bm-1);j+=1){

C[i][j] = 0.0f;

C[i][j] += (A[i][0] * B[0][j]);

for (n = 1; n <= ambn - 1; n += 1)

C[i][j] += (A[i][n] * B[n][j]);

}

for (j = 5; j <= bm - 1; j += 1) {

C[i][j] = 0.0f;

C[i][j] += (A[i][0] * B[0][j]);

for (n = 1; n <= ambn - 1; n += 1)

C[i][j] += (A[i][n] * B[n][j]);

}

}

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 21

Tile

[Transform]tile (int stmt, int loop, int tile_size, int control_loop = 1,

TileMethod method = 0, int alignment_offset = 1,

int alignment_multiple = 1)
The tile transformation allows a loop dimension to be segregated into tiles, the
execution of which are scheduled by a control loop placed outside the tiled loop. The
statements stmt and surrounding loops inside the control loop will be executed a tile
at a time along the tiled dimension.

The loop nest to tile is specified by stmt and loop. The argument tile size specifies
the tile size, a value of 0 indicates no tiling, a value of 1 is similar to loop interchange
and a value greater than 1 sets the tile size to that value. The argument control loop
specifies the loop level where the controlling loop should be placed, the default is 1
or the outermost loop. The argument method specifies the tiling method, a value of
0 indicates that the index value of the control loop is the actual index to the start of
the tile and is known as a “strided tile”, a value of 1 indicates that the index value
of control loop is the value of the tile and must be multiplied by tile size to get the
index to the start of the tile. The value of alignment offset shifts the beginning of
the area to tile consistent with the alignment constraint in alignment multiple.

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known([’ambn > 0’, ’an > 0’, ’bm > 0’])

tile(0,2,4)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
chill test_tile.py

for(t2 = 0; t2 <= bm-1; t2 += 4) {

for(t4 = 0; t4 <= an-1; t4++) {

for(t6 = t2; t6 <= min(t2+3,bm-1); t6++) {

s0(t4,t6,0);

s1(t4,t6,0);

for(t8 = 1; t8 <= ambn-1; t8++) {

s1(t4,t6,t8);

}

}

}

}
✡ ✠

Transformed code
☛ ✟
#define __rose_lt(x,y) ((x)<(y)?(x):(y))

void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n, jj;

for (jj = 0; jj <= bm - 1; jj += 4)

for (i = 0; i <= an - 1; i += 1)

for (j=jj; j<=__rose_lt(bm-1,jj+3);

j+=1) {

C[i][j] = 0.0f;

C[i][j] += (A[i][0] * B[0][j]);

for (n = 1; n <= ambn - 1; n += 1)

C[i][j] += (A[i][n] * B[n][j]);

}

}
✡ ✠

Chapter 3: The CHiLL Scripting Language 22

Unroll

[Transform]unroll (int stmt, int loop, int unroll_amount, int
cleanup_split_level)

The unroll transformation unrolls a specified number of iterations of a statement
inside the loop at level loop.

Python Script
☛ ✟
from chill import *

source(’mm.c’)

procedure(’mm’)

loop(0)

known(’ambn > 0’, ’an > 0’, ’bm > 0’)

distribute([0,1], 1)

unroll(1, 3, 4)

print_code()

✡ ✠

Original code
☛ ✟
void mm(float **A, float **B, float **C,

int ambn, int an, int bm) {

int i, j, n;

for(i = 0; i < an; i++)

for(j = 0; j < bm; j++) {

C[i][j] = 0.0f;

for(n = 0; n < ambn; n++)

C[i][j] += A[i][n] * B[n][j];

}

}
✡ ✠

Output on stdout
☛ ✟
for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

s0(t2,t4,0);

}

}

for(t2 = 0; t2 <= an-1; t2++) {

for(t4 = 0; t4 <= bm-1; t4++) {

s2(t2,t4);

for(t6 = 0; t6 <= -over1+ambn-1;

t6 += 4) {

s1(t2,t4,t6);

s4(t2,t4,t6);

}

for(t6 = max(0, ambn-over1);

t6 <= ambn-1; t6++) {

s3(t2,t4,t6);

}

}

}
✡ ✠

Transformed code
☛ ✟
#define __rose_gt(x,y) ((x)>(y)?(x):(y))

void mm(float **A, float **B, float **C,

int ambn, int an, int bm)

{

int i, j, n, over1;

over1 = 0;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1)

C[i][j] = 0.0f;

for (i = 0; i <= an - 1; i += 1)

for (j = 0; j <= bm - 1; j += 1) {

over1 = ambn % 4;

for (n = 0; n <= -over1 + ambn - 1;

n += 4) {

C[i][j] += (A[i][n]*B[n][j]);

C[i][j] += (A[i][n+1]*B[n+1][j]);

C[i][j] += (A[i][n+2]*B[n+2][j]);

C[i][j] += (A[i][n+3]*B[n+3][j]);

}

for (n = __rose_gt(0,ambn - over1);

n <= ambn - 1; n += 1)

C[i][j] += (A[i][n] * B[n][j]);

}

}
✡ ✠

Concept Index 23

Concept Index

A
antidependence . 5

C
control dependence . 5

D
data dependence . 5
dependence types . 5
direction vector . 7
distance vector . 6

I
iteration space . 4

iteration vector . 3

L
legality of transformations . 7

loop-carried dependence . 5

loop-independent dependence 5

O
output dependence . 5

T
true dependence . 5

Function and Transformation Index 24

Function and Transformation Index

D
distribute . 10

E
exit . 9

F
fuse . 11

K
known . 9

L
loop . 9

N
nonsingular . 12

P
peel . 13

permute . 14
print_code . 9
print_dep . 9
print_space . 9
procedure . 9

R
remove_dep . 9
reverse . 15

S
scale . 16
shift . 17
shift_to . 18
skew . 19
source . 9
split . 20

T
tile . 21

U
unroll . 22

