/***************************************************************************** Copyright (C) 1994-2000 the Omega Project Team Copyright (C) 2005-2011 Chun Chen All Rights Reserved. Purpose: CodeGen class as entry point for code generation. Notes: Loop variable name prefix should not cause any possible name conflicts with original loop variables wrapped in statement holder. This guarantees that variable substitution done correctly in the generated code. History: 04/24/96 MMGenerateCode, added by Fortran D people. Lei Zhou 09/17/08 loop overhead removal based on actual nesting depth -- by chun 03/05/11 fold MMGenerateCode into CodeGen class, Chun Chen *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include namespace omega { const std::string CodeGen::loop_var_name_prefix = "t"; const int CodeGen::var_substitution_threshold = 10; //Anand--adding stuff to make Chun's code work with Gabe's std::vector< std::vector > smtNonSplitLevels; std::vector< std::vector > loopIdxNames;//per stmt std::vector< std::pair > syncs; CodeGen::CodeGen(const std::vector &xforms, const std::vector &IS, const Relation &known, std::vector< std::vector > smtNonSplitLevels_ , std::vector< std::vector > loopIdxNames_, std::vector< std::pair > syncs_) { // check for sanity of parameters int num_stmt = IS.size(); if (xforms.size() != num_stmt) throw std::invalid_argument("number of iteration spaces does not match number of transformations"); known_ = copy(known); if (known_.n_out() != 0) throw std::invalid_argument("known condition must be a set relation"); if (known_.is_null()) known_ = Relation::True(0); else known_.simplify(2, 4); if (!known_.is_upper_bound_satisfiable()) return; if (known_.number_of_conjuncts() > 1) throw std::invalid_argument("only one conjunct allowed in known condition"); xforms_ = xforms; for (int i = 0; i < num_stmt; i++) { xforms_[i].simplify(); if (!xforms_[i].has_single_conjunct()) throw std::invalid_argument("mapping relation must have only one conjunct"); if (xforms_[i].n_inp() != IS[i].n_inp() || IS[i].n_out() != 0) throw std::invalid_argument("illegal iteration space or transformation arity"); } //protonu-- //easier to handle this as a global smtNonSplitLevels = smtNonSplitLevels_; syncs = syncs_; loopIdxNames = loopIdxNames_; //end-protonu // find the maximum iteration space dimension we are going to operate on int num_level = known_.n_inp(); for (int i = 0; i < num_stmt; i++) if (xforms_[i].n_out() > num_level) num_level = xforms_[i].n_out(); known_ = Extend_Set(known_, num_level-known_.n_inp()); for (int i = 1; i <= num_level; i++) known_.name_set_var(i, loop_var_name_prefix + to_string(i)); known_.setup_names(); // split disjoint conjunctions in original iteration spaces std::vector new_IS; for (int i = 0; i < num_stmt; i++) { for (int j = 1; j <= IS[i].n_inp(); j++) xforms_[i].name_input_var(j, const_cast &>(IS)[i].input_var(j)->name()); for (int j = 1; j <= xforms_[i].n_out(); j++) xforms_[i].name_output_var(j, loop_var_name_prefix + to_string(j)); xforms_[i].setup_names(); Relation R = Range(Restrict_Domain(copy(xforms_[i]), copy(IS[i]))); R = Intersection(Extend_Set(R, num_level-R.n_inp()), copy(known_)); R.simplify(2, 4); if (R.is_inexact()) throw codegen_error("cannot generate code for inexact iteration spaces"); while(R.is_upper_bound_satisfiable()) { DNF *dnf = R.query_DNF(); DNF_Iterator c(dnf); Relation R2 = Relation(R, *c); R2.simplify(); new_IS.push_back(copy(R2)); remap_.push_back(i); c.next(); if (!c.live()) break; Relation remainder(R, *c); c.next(); while (c.live()) { remainder = Union(remainder, Relation(R, *c)); c.next(); } R = Difference(remainder, R2); R.simplify(2, 4); } } // number of new statements after splitting num_stmt = new_IS.size(); if(!smtNonSplitLevels.empty()) smtNonSplitLevels.resize(num_stmt); // assign a dummy value to loops created for the purpose of expanding to maximum dimension for (int i = 0; i < num_stmt; i++) { if (xforms[remap_[i]].n_out() < num_level) { F_And *f_root = new_IS[i].and_with_and(); for (int j = xforms[remap_[i]].n_out()+1; j <= num_level; j++) { EQ_Handle h = f_root->add_EQ(); h.update_coef(new_IS[i].set_var(j), 1); h.update_const(posInfinity); } new_IS[i].simplify(); } } // calculate projected subspaces for each loop level once and save for CG tree manipulation later projected_IS_ = std::vector >(num_level); for (int i = 0; i < num_level; i++) projected_IS_[i] = std::vector(num_stmt); for (int i = 0; i < num_stmt; i++) { if (num_level > 0) projected_IS_[num_level-1][i] = new_IS[i]; for (int j = num_level-1; j >= 1; j--) { projected_IS_[j-1][i] = Project(copy(projected_IS_[j][i]), j+1, Set_Var); projected_IS_[j-1][i].simplify(2, 4); } } } CG_result *CodeGen::buildAST(int level, const BoolSet<> &active, bool split_on_const, const Relation &restriction) { if (level > num_level()) return new CG_leaf(this, active); int num_active_stmt = active.num_elem(); if (num_active_stmt == 0) return NULL; else if (num_active_stmt == 1) return new CG_loop(this, active, level, buildAST(level+1, active, true, restriction)); // use estimated constant bounds for fast non-overlap iteration space splitting if (split_on_const) { std::vector, int> > bounds; for (BoolSet<>::const_iterator i = active.begin(); i != active.end(); i++) { Relation r = Intersection(copy(projected_IS_[level-1][*i]), copy(restriction)); r.simplify(2, 4); if (!r.is_upper_bound_satisfiable()) continue; coef_t lb, ub; r.single_conjunct()->query_variable_bounds(r.set_var(level),lb,ub); bounds.push_back(std::make_pair(std::make_pair(lb, ub), *i)); } sort(bounds.begin(), bounds.end()); std::vector split_cond; std::vector split_child; coef_t prev_val = -posInfinity; coef_t next_val = bounds[0].first.second; BoolSet<> next_active(active.size()); int i = 0; while (i < bounds.size()) { if (bounds[i].first.first <= next_val) { next_active.set(bounds[i].second); next_val = max(next_val, bounds[i].first.second); i++; } else { Relation r(num_level()); F_And *f_root = r.add_and(); if (prev_val != -posInfinity) { GEQ_Handle h = f_root->add_GEQ(); h.update_coef(r.set_var(level), 1); h.update_const(-prev_val-1); } if (next_val != posInfinity) { GEQ_Handle h = f_root->add_GEQ(); h.update_coef(r.set_var(level), -1); h.update_const(next_val); } r.simplify(); Relation new_restriction = Intersection(copy(r), copy(restriction)); new_restriction.simplify(2, 4); CG_result *child = buildAST(level, next_active, false, new_restriction); if (child != NULL) { split_cond.push_back(copy(r)); split_child.push_back(child); } next_active.unset_all(); prev_val = next_val; next_val = bounds[i].first.second; } } if (!next_active.empty()) { Relation r = Relation::True(num_level()); if (prev_val != -posInfinity) { F_And *f_root = r.and_with_and(); GEQ_Handle h = f_root->add_GEQ(); h.update_coef(r.set_var(level), 1); h.update_const(-prev_val-1); r.simplify(); } Relation new_restriction = Intersection(copy(r), copy(restriction)); new_restriction.simplify(2, 4); CG_result *child = buildAST(level, next_active, false, new_restriction); if (child != NULL) { split_cond.push_back(copy(r)); split_child.push_back(child); } } if (split_child.size() == 0) return NULL; else if (split_child.size() == 1) return split_child[0]; else return new CG_split(this, active, split_cond, split_child); } // check bound conditions exhaustively for non-overlap iteration space splitting else { std::vector Rs(active.size()); for (BoolSet<>::const_iterator i = active.begin(); i != active.end(); i++) { Rs[*i] = Intersection(Approximate(copy(projected_IS_[level-1][*i])), copy(restriction)); Rs[*i].simplify(2, 4); } Relation hull = SimpleHull(Rs); //protonu-warn Chun about this change //This does some fancy splitting of statements into loops with the //fewest dimentions, but that's not necessarily what we want when //code-gening for CUDA. smtNonSplitLevels keeps track per-statment of //the levels that should not be split on. bool checkForSplits = true; for (BoolSet<>::const_iterator i = active.begin(); i != active.end(); i++) { if(*i < smtNonSplitLevels.size()) for(int k = 0; k ::const_iterator i = active.begin(); i != active.end() && checkForSplits; i++) { Relation r = Gist(copy(Rs[*i]), copy(hull), 1); if (r.is_obvious_tautology()) continue; r = EQs_to_GEQs(r); r.print(); for (GEQ_Iterator e = r.single_conjunct()->GEQs(); e; e++) { if ((*e).has_wildcards()) continue; Relation cond = Relation::True(num_level()); BoolSet<> first_chunk(active.size()); BoolSet<> second_chunk(active.size()); if ((*e).get_coef(hull.set_var(level)) > 0) { cond.and_with_GEQ(*e); cond = Complement(cond);; cond.simplify(); second_chunk.set(*i); } else if ((*e).get_coef(hull.set_var(level)) < 0) { cond.and_with_GEQ(*e); cond.simplify(); first_chunk.set(*i); } else continue; bool is_proper_split_cond = true; for (BoolSet<>::const_iterator j = active.begin(); j != active.end(); j++) if ( *j != *i) { bool in_first = Intersection(copy(Rs[*j]), copy(cond)).is_upper_bound_satisfiable(); bool in_second = Difference(copy(Rs[*j]), copy(cond)).is_upper_bound_satisfiable(); if (in_first && in_second) { is_proper_split_cond = false; break; } if (in_first) first_chunk.set(*j); else if (in_second) second_chunk.set(*j); } if (is_proper_split_cond && first_chunk.num_elem() != 0 && second_chunk.num_elem() != 0) { CG_result *first_cg = buildAST(level, first_chunk, false, copy(cond)); CG_result *second_cg = buildAST(level, second_chunk, false, Complement(copy(cond))); if (first_cg == NULL) return second_cg; else if (second_cg == NULL) return first_cg; else { std::vector split_cond; std::vector split_child; split_cond.push_back(copy(cond)); split_child.push_back(first_cg); split_cond.push_back(Complement(copy(cond))); split_child.push_back(second_cg); return new CG_split(this, active, split_cond, split_child); } } } } return new CG_loop(this, active, level, buildAST(level+1, active, true, restriction)); } } CG_result *CodeGen::buildAST(int effort) { if (remap_.size() == 0) return NULL; CG_result *cgr = buildAST(1, ~BoolSet<>(remap_.size()), true, Relation::True(num_level())); if (cgr == NULL) return NULL; // break down the complete iteration space condition to levels of bound/guard condtions cgr = cgr->recompute(cgr->active_, copy(known_), copy(known_)); if (cgr == NULL) return NULL; // calculate each loop's nesting depth int depth = cgr->populateDepth(); // redistribute guard condition locations by additional splittings std::pair result = cgr->liftOverhead(min(effort,depth), false); // since guard conditions are postponed for non-loop levels, hoist them now. // this enables proper if-condition simplication when outputting actual code. result.first->hoistGuard(); return result.first; } }