
The Omega Calculator and Library, version 1.1.0

Wayne Kelly, Vadim Maslov, William Pugh,

Evan Rosser, Tatiana Shpeisman, Dave Wonnacott

November 18, 1996

1 Introduction

This document gives an overview of the Omega library and describes the Omega Calculator, a text-based
interface to the Omega library. A separate document describes the C++ interface to the Omega library and
we are still working on a third document that describes some of the algorithms used in implementing the
Omega library.

The Omega library manipulates integer tuple relations and sets, such as

{[i, j] → [j, j′] : 1 ≤ i < j < j′ ≤ n} and {[i, j] : 1 ≤ i < j ≤ n}

Tuple relations and sets are described using Presburger formulas[KK67, Sho77, Coo72, Coo71] a class of
logical formulas which can be built from affine constraints over integer variables, the logical connectives ¬,
∧ and ∨, and the quantifiers ∀ and ∃. The best known upper bound on the performance of an algorithm for

verifying Presburger formulas is 22
2

n

[Opp78], and we have no reason to believe that our method provides
better worst-case performance. However, we have found it to be reasonably efficient for our applications.

The following relation, which maps 2-tuples to 1-tuples: {[i, j] → [i] : 1 ≤ i, j ≤ 2} represents the
following set of mappings: {[1, 1] → [1], [1, 2] → [1], [2, 1] → [2], [2, 2] → [2]}. In addition to variables in the
input and output tuples, the Presburger formulas may also contain free variables. This allows parameterized
relations to be described. For example, n and m are free in {[i, j] → [i] : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}. The
language allows new relations to be defined in terms of existing relations by providing a number of relational
operators. The relational operations provided include intersection, union, composition, inverse, domain,
range and complement. For example, {[p] → [2p, q]} compose {[i, j] → [i]} evaluates to {[i, j] → [2i, q]}.

Relations are simplified before being displayed to the user. This involves transforming them into dis-
junctive normal form and removing redundant constraints and conjuncts. During simplification, it may be
determined that the relation contains no points or contains all points, in which case the simplified con-
straints will be False or True respectively. For example, {[i] → [i]} intersect {[i] → [i + 1]} evaluates to
{[i] → [i′] : False}.

The copyright notice and legal fine print for the Omega calculator and library are contained in the
README and omega.h files. Basically, you can do anything you want with them (other than sue us); if you
redistribute it you must include a copy of our copyright notice and legal fine print.

2 Omega Calculator invocation, syntax and semantics

The calculator reads from the file given as the first argument, or standard input, and prints results on
standard output. You can specify several command line flags. Using -Dmk, where m is a character and k is
a digit, sets the debugging level to k for module m. Using -Gg sets the maximum number of inequalities in
a conjunct to g. Using -Ee sets the maximum number of equalities in a conjunct to E. In version 1.1.0, we
intend to change our data structures so that these will not need to be specified. There is also a limit on the
maximum number of variables in a conjunct, but this cannot be changed at run-time. It is given by maxVars

in oc.h. We also intend to make this go away.
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The input is a series of statements terminated by semicolons. A # indicates that the rest of the line
is a comment. The syntax <<filename>> can occur anywhere (and indicates that the text of the file is to
be included here. The statements can have one of the forms listed in Figure 1. RelExpr is a short form of
Relational Expression.

Syntax Semantics
symbolic varList Defines the variable names as symbolic constants that can be used in all

later expressions.
var := RelExpr Computes the relational expression and binds the variable name to the

result.
RelExpr Computes and prints the relational expression.
codegen . . . This is described in Section 5.
RelExpr subset RelExpr Prints True if the first relation is a subset of the second, otherwise prints

False.

Figure 1: Omega Calculator statements

Figures 2 and 2 show a sample session with the Omega Calculator. Lines starting with # are input to
the Omega calculator, the other lines are output from the calculator.

Some relational operations may not preserve the names of input and output variables. If this happens, the
variables get default names: In n for input variables and Out n for output variables, where n is a position of
variables in its tuple. When printing, primes are added to variables to distinguish between multiple variables
with the same name. In input, primes may also be used to distinguish between multiple variables with the
same name: the primes are stripped before being passed to the Omega library.

3 Relations

3.1 Building relations

A relation is an operand of a relational expression. Its syntax is:

{ [ InputList ] -> [ OutputList ] : formula }

InputList and OutputList are lists of tuple elements. A tuple element can be:
var The corresponding tuple variable is given this name. If a variable with that name

is already in scope, an equality is added forcing this tuple variable to be equal to
the value of the previous definition.

exp The tuple variable is unnamed and forced to be equal to the expression.
exp:exp The tuple variable is unnamed and forced to be greater than or equal to the first

expression and less than or equal to the second.
exp:exp:int The tuple variable is unnamed and forced to be greater than or equal to the first

expression and less than or equal to the second, and the difference between the
tuple variable and the first expression must be an integer multiple of the integer.

* The tuple variable is unnamed.
The formula is optional. If it is omitted, no constraints other than those introduced by the input and

output expressions are imposed upon the relation’s variables. Otherwise, the formula describes additional
constraints on variables used in the relation.

3.2 Sets

In addition to relations, the system can represent sets.
When a relation is declared with only one tuple, as in:

{ [ SetList ] : formula }

then the relation becomes a set. The variables that are used to describe a set (SetList) are called set variables
rather than input or output variables.
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# R := { [i] -> [i’] : 1 <= i,i’ <= 10 && i’ = i+1 };

# R;

{[i] -> [i+1] : 1 <= i <= 9}

# inverse R;

{[i] -> [i-1] : 2 <= i <= 10}

# domain R;

{[i]: 1 <= i <= 9}

# range R;

{[i]: 2 <= i <= 10}

# R compose R;

{[i] -> [i+2] : 1 <= i <= 8}

# R+;

{[i] -> [i’] : 1 <= i < i’ <= 10}

# # closure of R = R union (R compose R) union (R compose R ...

# complement R;

{[i] -> [i’] : i <= 0} union

{[i] -> [i’] : 10 <= i} union

{[i] -> [i’] : 1 <= i <= 9, i’-2} union

{[i] -> [i’] : 1, i’ <= i <= 9}

# S := {[i] : 5 <= i <= 25};

# S;

{[i]: 5 <= i <= 25}

# R(S);

{[i]: 6 <= i <= 10}

# # apply R to S

# R \ S;

{[i] -> [i+1] : 5 <= i <= 9}

# # restrict domain of R to S

# R / S;

{[i] -> [i+1] : 4 <= i <= 9}

# # restrict range of R to S

# (R\S) union (R/S);

{[i] -> [i+1] : 4 <= i <= 9}

# (R\S) intersection (R/S);

{[i] -> [i+1] : 5 <= i <= 9}

# (R/S) - (R\S);

{[4] -> [5] }

# S*S;

{[i] -> [i’] : 5 <= i <= 25 && 5 <= i’ <= 25}

# # cross product

Figure 2: Example of the Omega Calculator in action: part 1
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# D := S - {[9:16:2]} - {[17:19]};

# D;

{[i]: 5 <= i <= 8} union

{[i]: Exists ( alpha : 2alpha = i && 10 <= i <= 16)} union

{[i]: 20 <= i <= 25}

# T := { [i] : 1 <= i <= 11 & exists (a : i = 2a) };

# T;

{[i]: Exists ( alpha : 2alpha = i && 2 <= i <= 10)}

# Hull T;

{[i]: 2 <= i <= 10}

# Hull D;

{[i]: 5 <= i <= 25}

# codegen D;

for(t1 = 5; t1 <= 8; t1++) {

s1(t1);

}

for(t1 = 10; t1 <= 16; t1 += 2) {

s1(t1);

}

for(t1 = 20; t1 <= 25; t1++) {

s1(t1);

}

# codegen {[i,j] : 1 <= i+j,j <= 10};

for(t1 = -9; t1 <= 9; t1++) {

for(t2 = max(-t1+1,1); t2 <= min(-t1+10,10); t2++) {

s1(t1,t2);

}

}

Figure 3: Example of the Omega Calculator in action: part 2
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3.3 Presburger formula operations

As mentioned above, the tuples belonging to the relation are defined by a Presburger formula. This formula
is built from constraints using the operations described in Figure 4.

Name Notation
And formula & formula formula && formula formula and formula
Or formula | formula formula || formula formula or formula
Not ! formula not formula
Exists exists (v1, ..., vn: formula)
Forall forall (v1, ..., vn: formula)
Parentheses (formula)
Constraint constraint

Figure 4: Presburger formula syntax

3.4 Constraints and arithmetic and comparison operations

A Presburger formula is built from constraints using the operations described in the previous subsection. In
this subsection we describe the syntax of individual constraints.

A constraint is a series of expression lists, connected with the arithmetic relational operators =, !=, >,

>=, <, <=. An example is 2i + 3j <= 5k,p <= 3x-z = t.
When an constraint contains a comma-separated list of expressions, it indicates that the same con-

straints should be introduced for each of the expressions. The constraint a,b <= c,d > e,f translates to
the constraints

a ≤ c ∧ a ≤ d ∧ b ≤ c ∧ b ≤ d ∧ c > e ∧ c > f ∧ d > e ∧ d > f

Expressions can be of the forms (where var is a variable, integer is an integer constant, and e, e1, and e2

are expressions): var, integer, e, integer e, e1 + e2, e1 − e2, e1 ∗ e2, −e, (e).
An important restriction is that all expressions in the constraints must be affine functions of the variables.

For example, 2 ∗ x is legal, x ∗ 2 is legal, but x ∗ x is illegal.

4 Relational and set operations

A relational expression is an expression over individual relations. The relational operations defined in the
system are listed in Figures 5 and 6. Here r, r1, r2 are relations and s, s1, s2 are sets.

5 Code Generation

The Omega Calculator incorporates an algorithm for generating code for multiple, overlapping iteration
spaces [KPR95]. Each iteration space has an associated statement or block of statements. The syntax is

codegen [effort] IS1, IS2, . . . , ISn [ given known]
Each iteration space ISi can be specified either as a set representing the iteration space, or as an original
iteration space and a transformation, T:IS, where IS is the original iteration space and T is a relation defining
an affine, 1-1 mapping to a new iteration space. That is, given a point in the original iteration space, the
mapping specifies the point in the new iteration space at which to execute that iteration.

The effort value specifies the amount of effort to be used to eliiminate sources of overhead in the generated
code. Sources of overhead include if statements an min and max functions in loop bounds. If not specified,
the effort level is 0. The different effort levels are:

-2 Minimal possible effort. Loop bounds may not be finite.

-1 Forces finite bounds
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Name Syntax Explanation
Union r = r1 union r2 x → y ∈ r iff x → y ∈ r1 or x → y ∈ r1

s = s1 union s2 x ∈ s iff x ∈ s1 or x ∈ s1

Intersection r = r1 intersection r2 x → y ∈ r iff x → y ∈ r1 and x → y ∈ r1

s = s1 intersection s2 x ∈ s iff x ∈ s1 and x ∈ s1

Difference r = r1 − r2 x → y ∈ r iff x → y ∈ r1 and x → y 6∈ r1

s = s1 − s2 x ∈ s iff x ∈ s1 and x 6∈ s1

Complement r = complement r1 x → y ∈ r iff x → y 6∈ r1

s = complement s1 x ∈ s iff x 6∈ r1

Composition r = r1 compose r2 x → y ∈ r iff ∃y s.t. x → y ∈ r2 and y → z ∈ r1

Application s = r1(s2) x ∈ s iff ∃y s.t. x → y ∈ r1 and y ∈ s2

r = r1(r2) Equivalent to r1 compose r2

Join r = r1.r2 Equivalent to r2 compose r1

x → y ∈ r iff ∃y s.t. x → y ∈ r1 and y → z ∈ r2

Inverse r = inverse r1 x → y ∈ r iff y → x ∈ r1

Domain s = domain r1 x ∈ s iff ∃y s.t. x → y ∈ r1

Range s = range r1 y ∈ s iff ∃x s.t. x → y ∈ r1

Restrict Domain r = r1 \ s2 x → y ∈ r iff x → y ∈ r1 and x ∈ s2

Restrict Range r = r1 / s2 x → y ∈ r iff x → y ∈ r1 and y ∈ s2

Gist r = gist r1 given r2 Computes gist of relation r1 given relation r2.

Figure 5: Relational operations, part 1

0 Forces finite bounds and tries to remove if’s within most deeply nested loops (at a possible cost of code
duplication).

1 removes if’s within most deeply nested loops and loops one short of being most deeply nested.

2 . . . and loops two short of being most deeply nested.

x . . . and loops x short of being most deeply nested.

The known information, if specified, is used to simplify the generated code. The generated code will not
be correct if known is not true. Currently, the known relation needs to be a set with the same arity and the
transformed iteration space.

A discussion of program transformations using this framework is given in [KP93, KP94b, KP94a].
The following is an example of code generation, given three original iteration spaces and mappings. The

transformed code requires the traditional transformations loop distribution and imperfectly nested triangular
loop interchange. Below, the program information has been extracted and presented to the Omega Calculator
in relation form.

Original code

do 30 i=2,n

10 sum(i) = 0.

do 20 j=1,i-1

20 sum(i) = sum(i) + a(j,i)*b(j)

30 b(i) = b(i) - sum(i)

Schedule (for parallelism)
T10 : { [ i ] → [ 0, i, 0, 0 ] }

T20 : { [ i, j ] → [ 1, j, 0, i ] }

T30 : { [ i ] → [ 1, i − 1, 1, 0 ] }

Omega Calculator output:
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Name Syntax Explanation
Hull r = hull r1 Computes an single convex region that contains all of r1.

Not as tight as the convex hull, but intended to be fairly
fast.

Convex Hull r = ConvexHull r1 Computes the convex hull [Sch86, Wil93] of r1. May be
prohibitively expensive to compute and/or induce numeric
overflow of coefficients (leading to a core dump)

Affine Hull r = AffineHull r1 Computes the affine hull [Sch86, Wil93] of r1. May be
prohibitively expensive to compute and/or induce numeric
overflow of coefficients (leading to a core dump)

Linear Hull r = LinearHull r1 Computes the linear hull [Sch86, Wil93] of r1. May be
prohibitively expensive to compute and/or induce numeric
overflow of coefficients (leading to a core dump)

Conic Hull r = ConicHull r1 Computes the conic or cone hull [Sch86, Wil93] of r1. May
be prohibitively expensive to compute and/or induce nu-
meric overflow of coefficients (leading to a core dump)

Farkas Lemma r = farkas r1 Applies Farkas’s lemma [Sch86, Wil93] to r1. In the result,
the values of the variables correspond to legal values for
coefficients of equations implied by the convex hull of r1.
Also happens to represent the convex hull of rN using a
points and rays representation. See [Wil93] for a more
detailed explaination.

Convex Check r = ConvexCheck r1 Returns the convex hull of r1 if we can easily determine
that it is equal to r1, otherwise returns r1.

Pairwise Convex Check r = PairwiseCheck r1 Checks to see if any two conjuncts in r1 can be replaced
exactly by their convex hull (doing so if possible).

Transitive Closure r = r1+ Least fixed point of r+ ≡ r ∪ (r ◦ r+)
r = r1+ within b Least fixed point of r+ for dependence relation r within

iteration space b
Conic Closure r = r1@ Gives a simple dependence relation r such that any linear

schedule for all of the dependences in r is non-negative if
and only if it is legal for all of the dependences in r1. Note
that r1+ ⊆ r1@. We previously refered to this as affine
closure [KP95].

Cross-product r = r1 * r2 x → y ∈ r iff x ∈ r1 and y ∈ r2

Create superset r = supersetof r1 r is inexact with lower bound r1

Create subset r = subsetof r1 r is inexact with upper bound r1

Create upper bound r = upper bound r1 r is an exact relation and is an upper bound on r1 (all
UNKNOWN constraints in r1 are interpreted as TRUE)

Create lower bound r = lower bound r1 r is an exact relation and a lower bound on r1 (all UN-
KNOWN constraints in r1 are interpreted as FALSE)

Get an example r = example r1 r ⊆ r1 and all variables in r are single-valued
Symbolic example r = sym example r1 r ⊆ r1 and all non-symbolic variables in r are single-valued

Figure 6: Relational operations, part 2
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# Omega Calculator [v1.1.0, Nov 96]:

# #

# # Example of code generation from Omega Calculator documentation

# #

#

# T10:={[i] -> [0,i,0,0]};

#

# T20:={[i,j] -> [1,j,0,i]};

#

# T30:={[i] -> [1,i-1,1,0]};

#

#

# Symbolic n;

#

# IS10 := {[i]: 2 <= i <= n};

#

# IS20 := {[i,j]: 2 <= i <= n && 1 <= j <= i-1};

#

# IS30 := IS10;

#

#

# codegen T10:IS10,T20:IS20,T30:IS30;

for(t2 = 2; t2 <= n; t2++) {

s1(t2);

}

for(t2 = 1; t2 <= n-1; t2++) {

for(t4 = t2+1; t4 <= n; t4++) {

s2(t4,t2);

}

s3(t2+1);

}

6 Inexact Relations

The special constraint UNKNOWN represents one or more additional constraints that are not known to
the Omega Library. Such constraints can arise from uses of uninterpreted function symbols or transitive
closure (as described below), or when the user explicitly requests it. Such relations require conservative
treatment from the library (e.g., subtracting a conjunct containing UNKNOWN from a relation must return
that relation, since the unknown constraints might make the conjunct unsatisfiable.)

The upper bound and lower bound operations can be used to produce exact relations from inexact
relations. They are produced by treating UNKNOWN constraints as TRUE or FALSE, respectively.

7 Presburger Arithmetic with Uninterpreted Function Symbols

The Omega Calculator allows certain restricted uses of uninterpreted function symbols in a Presburger for-
mula. Functions may be declared in the symbolic statement as

symbolic Function (Arity)

where Function is the function name and Arity is its number of arguments. Functions of arity 0 are symbolic
constants.
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Functions may only be applied to a prefix of the input or output tuple of a relation, or a prefix of the tuple
of a set. The function application may list the names of the argument variables explicitly (not yet supported),
or use the abbreviations Function(In), Function(Out), and Function(Set), to describe the application of a
function to the appropriate length prefix of the desired tuple.

Our system relies on the following observation: Consider a formula F that contains references f(i) and
f(j), where i and j are free in F . Let F ′ be F with fi and fj substituted for f(i) and f(j). F if satisfiable
iff ((i = j) ⇒ (fi = fj)) ∧ F ′ is satisfiable. For more details, see [Sho79].

Presburger Arithmetic with uninterpreted function symbols is in general undecidable, so in some cir-
cumstances we will have to produce approximate results (as we do with the transitive closure operation)
[KPRS95].

The following examples show some legal uses of uninterpreted function symbols in the Omega Calculator:

# symbolic p(2), n, m;

#

# R := { [ir,jr] : 1 <= ir <= n && 1 <= jr <= m };

#

# W1 := { [iw,jw] : 1 <= iw <= n && 1 <= jw <= m && p(Set) >= 0 };

#

# W2 := { [iw,jw] : 1 <= iw <= n && 1 <= jw <= m && p(Set) < 0 };

#

# Exposed := R intersection complement ( W1 union W2 );

#

# Exposed;

{[In_1,In_2] : FALSE }

#

#

# symbolic f(1);

#

# R1 := { [i] -> [j] : 1 <= i = j <= 100 && f(In) <= f(Out)};

#

# R2 := { [i] -> [j] : 1 <= i <= j <= 100 && f(In) = f(Out)};

#

#

# R1 intersection R2;

{[i] -> [i] : 1 <= i <= 100}

#

# R1 union R2;

{[i] -> [j] : f(j) = f(i) && 1 <= i < j <= 100} union

{[i] -> [i] : 1 <= i <= 100}

#

# R1 intersection complement R2;

{[i] -> [j] : FALSE }

#

# R1;

{[i] -> [i] : 1 <= i <= 100}
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8 Reachability

Consider a graph where each directed edge is specified as a tuple relation. Given a tuple set for each node
representing starting states at each node, the library can compute which nodes of the graph are reachable
from those start states, and the values the tuples can take on.

The syntax is:

reachable ( [list of nodes] ) { [node:startstates] | node_i->node_j:transition] }

For example,

reachable (a,b,c)

{ a->b:{[1]->[2]},

b->c:{[2]->[3]},

a:{[1]}};

The transitions and start states may be any expression that evaluates to a relation.
You can also compute a tuple set containing the reachable values a t given node; for example:

R := reachable of c in (a,b,c)

{ a->b:{[1]->[2]},

b->c:{[2]->[3]},

a:{[1]}};

The current implementation is very straightforward and can be very slow.

9 Current limitations

The transitive closure operation will not work on a relation with uninterpreted function symbols of arity
> 0. Any operation that requires the projection of input or output variables (such as composition) may
return inexact results if variables in the argument list of a function symbol are projected.
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