# Omega Calculator v1.2 (based on Omega Library 1.2, August, 2000): # # do i = 1, np { # # do j = 1, i { # # ij = ia(i) + j # # a = 1. / (i + j) # # do k = 1, i { # # maxl = k # # if (k == i) then # # maxl = j # # endif # # do l = 1, maxl { # # kl = ia(k) + l # # b = 1. / (k + l) # # val = a + b # # if (i == j) then # # val = val * .5 # # endif # # if (k == l) then # # val = val * .5 # # endif # # x(ij,kl) = val # # x(kl,ij) = val # # } # # } # # } # # } # #! # # # # # # As far as I remember it was the dependence test between X(IJ,KL) and X(IJ,KL). # # # # Pips discovered the following precondition: # # # # {[d1,d2,d3,d4] : exists ( NP, # I,J,K,L,IJ,KJ,MAXL, # I',J',K',L',IJ',KJ',MAXL' : # I' = I+d1 && # J' = J+d2 && # K' = K+d3 && # L' = L+d4 # && 1<=L && 1<=J && MAXL<=K && I<=NP && NP<=40 && 10<=NP # && 10+8K+MAXL<=NP+8I+J && 38K+MAXL<=38I+J # && J+K<=I+MAXL && L<=MAXL # && 1 <= J,K <= I <= NP && 1 <=L <= MAXL # # && 1<=L' && 1<=J' && MAXL'<=K' && I'<=NP && NP<=40 && 10<=NP # && 10+8K'+MAXL'<=NP+8I'+J' && 38K'+MAXL'<=38I'+J' # && J'+K'<=I'+MAXL' && L'<=MAXL' # && 1 <= J',K' <= I' <= NP && 1 <=L' <= MAXL' # )}; {[d1,d2,d3,d4]: d2-39, -39, d4-39, d3-39 <= d1 <= d3+39, d2+39, d4+39, 39 && d4-39, -39 <= d3 <= 39, d4+39 && -39 <= d2 <= 39 && 39d4 <= 1521+38d1+d2 && d3 <= 39+d1+d4 && d2 <= 1521+d1+38d3+d4 && 38d1+d2 <= 1521+39d4 && 38d1+d2 <= 1521+38d3+d4 && d2 <= 1521+d1+39d4 && d1+38d3+d4 <= 1521+d2 && d1+d4 <= 39+d3 && 38d3+d4 <= 1521+38d1+d2 && d1+39d4 <= 1521+d2} # #