# do i = 1, np { # do j = 1, i { # ij = ia(i) + j # a = 1. / (i + j) # do k = 1, i { # maxl = k # if (k == i) then # maxl = j # endif # do l = 1, maxl { # kl = ia(k) + l # b = 1. / (k + l) # val = a + b # if (i == j) then # val = val * .5 # endif # if (k == l) then # val = val * .5 # endif # x(ij,kl) = val # x(kl,ij) = val # } # } # } # } #! # # # As far as I remember it was the dependence test between X(IJ,KL) and X(IJ,KL). # # Pips discovered the following precondition: # {[d1,d2,d3,d4] : exists ( NP, I,J,K,L,IJ,KJ,MAXL, I',J',K',L',IJ',KJ',MAXL' : I' = I+d1 && J' = J+d2 && K' = K+d3 && L' = L+d4 && 1<=L && 1<=J && MAXL<=K && I<=NP && NP<=40 && 10<=NP && 10+8K+MAXL<=NP+8I+J && 38K+MAXL<=38I+J && J+K<=I+MAXL && L<=MAXL && 1 <= J,K <= I <= NP && 1 <=L <= MAXL && 1<=L' && 1<=J' && MAXL'<=K' && I'<=NP && NP<=40 && 10<=NP && 10+8K'+MAXL'<=NP+8I'+J' && 38K'+MAXL'<=38I'+J' && J'+K'<=I'+MAXL' && L'<=MAXL' && 1 <= J',K' <= I' <= NP && 1 <=L' <= MAXL' )};