# Omega Calculator v1.2 (based on Omega Library 1.2, August, 2000):
# # This is the file facts.prew, which is prepended to the .prew files
# # for the particular code generation we want, defines things like the
# # iteration space and dependences.  Known facts are inserted by the
# # Makefile.
# #
# # If you're looking at a .w file instead of facts.prew, then you should
# # remember to edit the original .prew files, not the .w files.
# #
# # This facts.prew file describes the program
# #
# # for(i = 0; i <= N-1; i++) {
# #  cur[i]=...
# # }
# # for(t = 0; t < T; t++) {
# #   for(i = 0; i <= N-1; i++) {
# #     old[i]=cur[i];
# #   }
# #   for(i = 1; i <= N-2; i++) {
# #     cur[i] = (old[i-1]+old[i]+old[i]+old[i+1])*0.25;
# #   }
# # }
# 
# 
# 
# # first, the spaces and memory maps
# 
# symbolic T, N;
# 
# 
# IS_INIT := { [1,i,1,0,0]          :           0<=i<=N-1 };
# 
# MM_INIT := { [1,i,1,0,0] -> [0,i] :           0<=i<=N-1 };
# 
# 
# IS_COPY := { [2,t,0,i,1]            : 0<=t<T && 0<=i<=N-1 };
# 
# MM_COPY := { [2,t,0,i,1] -> [t+1,i] : 0<=t<T && 0<=i<=N-1 };
# 
# 
# IS_CALC := { [2,t,1,i,1]            : 0<=t<T && 0< i< N-1 };
# 
# MM_CALC := { [2,t,1,i,1] -> [t+1,i] : 0<=t<T && 0< i< N-1 };
# 
# 
# RESULTS := { [3,0,0,0,0] };
# 
# 
# 
# # memory-based Output and Flow/anti-dependences (among Assign (copy), and Calc)
# 
# FWD5 := {[x,t,y,i,z] -> [x',t',y',i',z'] :
# 	(x'>x) or
# 	(x'=x and t'>t) or
# 	(x'=x and t'=t and y'>y) or
# 	(x'=x and t'=t and y'=y and i'>i) or
# 	(x'=x and t'=t and y'=y and i'=i and z'>z) };
# 
# FWD7 := {[x,t,y,i,z,a,b] -> [x',t',y',i',z',a',b'] :
# 	(x'>x) or
# 	(x'=x and t'>t) or
# 	(x'=x and t'=t and y'>y) or
# 	(x'=x and t'=t and y'=y and i'>i) or
# 	(x'=x and t'=t and y'=y and i'=i and z'>z) or
# 	(x'=x and t'=t and y'=y and i'=i and z'=z and a'>a) or
# 	(x'=x and t'=t and y'=y and i'=i and z'=z and a'=a and b'>b) };
# 
# BWD5 := inverse FWD5;
# 
# BWD7 := inverse FWD7;
# 
# EQi := {[x,t,y,i,z] -> [x',t',y',i',z'] : i'=i };
# 
# 
# # output deps
# 
# OAA := (IS_COPY * IS_COPY) intersection FWD5 intersection EQi;
# 
# OCC := (IS_CALC * IS_CALC) intersection FWD5 intersection EQi;
# 
# 
# # combined flow/anti deps
# 
# FAC := (IS_COPY * IS_CALC) intersection FWD5 intersection {[2,t,0,i,1] -> [2,t',1,i',1]  : (i'-1<=i<=i'+1)};
# 
# FCA := (IS_CALC * IS_COPY) intersection FWD5 intersection {[2,t,1,i,1] -> [2,t',0,i',1]  : (i-1<=i'<=i+1)};
# 
# 
# # total memory deps in the "core"
# 
# COREMEMDEPS := OAA union OCC union FAC union FCA;
# 
# 
# 
# 
# # data flow for original code:
# 
# DF_12p1 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,0,0,i,1] : 0<i<N-1 };
# 
# DF_12p2 := ( IS_INIT * IS_COPY ) intersection {[1,0,1,0,0] -> [2,t,0,0,1] };
# 
# DF_12p3 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,t,0,i,1] : i=N-1 && N>1 };
# 
# DF_32   := ( IS_CALC * IS_COPY ) intersection {[2,t,1,i,1] -> [2,t+1,0,i,1]};
# 
# 
# DF_23a := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i+1,1] };
# 
# DF_23b := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i,1] };
# 
# DF_23c := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i-1,1] };
# 
# 
# 
# # data flow for array expanded code,
# # after forward substitution of "old[i] = cur[i]"
# 
# DF1Ia := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
# 
# DF1Ib := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t>0 && i=0 } restrictDomain IS_INIT restrictRange IS_CALC;
# 
# DF1C  := { [2,t,1,i,1] -> [2,t+1,1,i+1,1] } restrictDomain IS_CALC restrictRange IS_CALC;
# 
# DF2I  := { [1,i,1,0,0] -> [2,t,1,i,1] :   t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
# 
# DF2C  := { [2,t,1,i,1] -> [2,t+1,1,i+0,1] } restrictDomain IS_CALC restrictRange IS_CALC;
# 
# DF3Ia := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
# 
# DF3Ib := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t>0 && i=N-1 } restrictDomain IS_INIT restrictRange IS_CALC;
# 
# DF3C  := { [2,t,1,i,1] -> [2,t+1,1,i-1,1] } restrictDomain IS_CALC restrictRange IS_CALC;
# 
# 
# # total data flow
# 
# COREDATAFLOW := DF1C union DF2C union DF3C;
# 
# 
# 
# # arity expansion relations
# ex_0_5v := {             [] -> [a,b,c,d,e]     };
# 
# ex_0_7v := {             [] -> [a,b,c,d,e,f,g] };
# 
# ex_3_5 := {         [a,b,c] -> [a,b,c,0,0]     };
# 
# ex_3_7 := {         [a,b,c] -> [a,b,c,0,0,0,0] };
# 
# ex_5_7 := {     [a,b,c,d,e] -> [a,b,c,d,e,0,0] };
# 
# 
# ex_5_3 := {     [a,b,c,0,0] -> [a,b,c]         };
# 
# ex_7_3 := { [a,b,c,0,0,0,0] -> [a,b,c]         };
# 
# ex_7_5 := { [a,b,c,d,e,0,0] -> [a,b,c,d,e]     };
# 
# 
# 
# # stuff used in skew and tskew
# 
# # Here is the description of time skewing from the current draft of the paper.
# IS_Trans := { [2,t,1,i,1] -> [2,tb,1,s,1,tt,1] :
# 	0<=tt<500 && s=i+1*t && t=500*tb+tt };
# 
# 
# IS_Tinv := inverse IS_Trans;
# 
# 
# # We use it to transform the iteration spaces
# TS_IS_CALC := IS_CALC join IS_Trans;
# 
# # for some reason OC refuses do to this "join" but will do the reverse:
# # TS_IS_INIT := ex_7_5 join IS_INIT;
# TS_IS_INIT := IS_INIT  join (inverse ex_7_5);
# 
# 
# # Now we can update the data flow relations to correspond to the new I.S.'s
# TS_DF1Ia := ex_7_5  join DF1Ia join IS_Trans;
# 
# TS_DF1Ib := ex_7_5  join DF1Ib join IS_Trans;
# 
# TS_DF1C  := IS_Tinv join DF1C  join IS_Trans;
# 
# TS_DF2I  := ex_7_5  join DF2I  join IS_Trans;
# 
# TS_DF2C  := IS_Tinv join DF2C  join IS_Trans;
# 
# TS_DF3Ia := ex_7_5  join DF3Ia join IS_Trans;
# 
# TS_DF3Ib := ex_7_5  join DF3Ib join IS_Trans;
# 
# TS_DF3C  := IS_Tinv join DF3C  join IS_Trans;
# 
# 
#  
# KNOWN := { [] : T >= 0 and N >= 4 };
# 
#  
# #
# #  multiprocessor version
# #  time skewed iteration space
# #  blocked memory mapping 
# #
# 
# #
# # First of all, if 500 is much less than 4000,
# #  there's a problem with the constraints below.
# # To keep send and recv. slices from "crashing", 4000>=2BS+2 (safe approx?)
# #
# 
# assertUnsatisfiable( { [] : 4000 < 2 * 500 + 2 } );

{ FALSE }

# 
# 
# # this transformation has no existentially quantified variables;
# #  basically, it factors out the common stuff below,
# #  but the quantified variables are left in the output, so we can get them
# #  everything after the 000 is not needed in final xform
# 
# #
# # DANGER WILL ROBINSON!
# #  the .c file depends on the fact that t4 is always the processor number
# #
# 
# MP_TSKEW_ALL  := { [2, t, 1, i, 1] ->
# 		   [2, tb, slice, proc, t+i, tt, 000, t, i, lproc, t0, i0, ie]:
# ##
# ##	define time block and tt
# ##
# 		500*tb+tt = t and 0 <= tt < 500 
# ##
# ##		define "logical proc", then "wrap" onto physical later:
# ##		"logical proc" (lproc) = (t-i) div sigma
# ##
# 		and	4000*lproc <= t-i < 4000*(lproc+1)
# ##
# ##  for uniproc. test, just do proc = -lproc (for multi, proc = lproc % 8)
# ##
# 		and	proc = -lproc
# ##
# ##  t0,i0 = first iteration in a block;
# ##  t0,ie = maximum "i" in t0 of this block)
# ##
# 		and	t0=500*tb
# 		and	t0-ie=4000*lproc
# 		and	i0+4000-1=ie
# };
# 
# 
# #
# # We need to send things "down" (to same time block of next proc.)
# # and "right" (to next time block of next proc.)
# # The "+2" is for the things to send right (not mentioned in IPDPS paper).
# #
# 
# MP_TSKEW_SEND_SL := MP_TSKEW_ALL join
# 	{ [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# 	  [2, tb, 1, proc, t_p_i, tt, 0] :
# ##  define send slice...
# 			(t+i) <= (t0+(500-2) + i0+(500-1) + 2)
# };
# 
# 
# MP_TSKEW_SEND_ME := MP_TSKEW_ALL join
# 	{ [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# 	  [2, tb, 2, proc, t_p_i, tt, 0] :
# ##  in the send slice
# 			(t+i) <= (t0+(500-2) + i0+(500-1) + 2)
# ##  and near the (t-i) border:
# 		and	(t-i) >= ((t0-i0)-1)
# };
# 
# 
# MP_TSKEW_COMP_SL := MP_TSKEW_ALL join
# 	{ [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# 	  [2, tb, 3, proc, t_p_i, tt, 0] :
# ##  define computation slice...
# ##  not send
# 			(t+i) >  (t0+(500-2) + i0+(500-1) + 2)
# ##  and not recv
# 		and	(t+i) <= (t0+ie)
# };
# 
# 
# 
# 
# # Receive the iterations that we sent,
# # but after the calculation,
# # and on the neighbor (lower) processor
# 
# MP_TSKEW_R_FROM_ME := MP_TSKEW_SEND_ME join 
# 	{ [2, tb, 2, proc, t_p_i, tt, 0] ->
# 	  [2, tb, 4, proc-1, t_p_i, tt, 0] };
# 
# 
# 
# MP_TSKEW_RECV_SL := MP_TSKEW_ALL join
# 	{ [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# 	  [2, tb, 5, proc, t_p_i, tt, 0] :
# ##  define recv slice...
# 			(t+i) > (t0+ie)
# };
# 
# 
# 
# 
# 
# ## stuff to gather each processor's final results...
# 
# IS_GATHER := IS_CALC intersection { [2,t,1,i,1] : t=T-1 };
# 
# 
# GATHER_EXPANDER := MP_TSKEW_ALL join
# 	{ [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# 	  [3, tb, 7, proc, t_p_i, tt, 0] };
# 
# 
# ## stuff to initialize things right in the first place
# 
# ### NOTE THAT t4 (processor #) is used in a loop in initialization
# 
# IS_INIT_EXP := { [1,t,i,0,0] : (-1=t && 0<=i<=N-1) ||
# 			       (0<=t<T && 0=i) ||
# 			       (0<=t<T && N-1=i) };
# 
# 
# 
# # send_slice + calc_slice + recv slice == total
# 
# TheSendIS := domain(MP_TSKEW_SEND_SL restrictDomain IS_CALC);
# 
# TheCompIS := domain(MP_TSKEW_COMP_SL restrictDomain IS_CALC);
# 
# TheRecvIS := domain(MP_TSKEW_RECV_SL restrictDomain IS_CALC);
# 
# 
# assertUnsatisfiable(TheSendIS intersection TheCompIS);

{[In_1,t,In_3,i,In_5]  : FALSE }

# 
# assertUnsatisfiable(TheCompIS intersection TheRecvIS);

{[In_1,t,In_3,i,In_5]  : FALSE }

# 
# assertUnsatisfiable(TheSendIS intersection TheRecvIS);

{[In_1,t,In_3,i,In_5]  : FALSE }

# 
# #
# # These cause inexact negation and thus blow up...
# #
# # assertUnsatisfiable(IS_CALC - (TheSendIS union TheCompIS union TheRecvIS));
# # assertUnsatisfiable((TheSendIS union TheCompIS union TheRecvIS) - IS_CALC);
# 
# 
# 
# codegen
# 	ex_5_7 : IS_INIT_EXP,
# 	MP_TSKEW_SEND_SL : IS_CALC,
# 	 MP_TSKEW_SEND_ME : IS_CALC,
# 	MP_TSKEW_COMP_SL : IS_CALC,
# 	 MP_TSKEW_R_FROM_ME : IS_CALC,
# 	MP_TSKEW_RECV_SL : IS_CALC,
# 	GATHER_EXPANDER : IS_GATHER
# given	(KNOWN join ex_0_7v);
for(t3 = 0; t3 <= N-1; t3++) {
  s1(1,-1,t3,0,0);
}
for(t2 = 0; t2 <= T-1; t2++) {
  s1(1,t2,0,0,0);
  s1(1,t2,N-1,0,0);
}
for(t2 = 0; t2 <= intDiv(T-1,500); t2++) {
  for(t4 = intDiv(-t2+7+7,8); t4 <= intDiv(-500*t2+N+3997,4000); t4++) {
    for(t5 = max(1000*t2+4000*t4-3999,500*t2+1); t5 <= min(1000*t2+4000*t4-3000,N+T-3,2*N-4000*t4+3995); t5++) {
      for(t6 = max(-N+t5-500*t2+2,0); t6 <= min(t5-500*t2-1,T-500*t2-1,intDiv(t5-4000*t4-1000*t2+3999,2)); t6++) {
        s2(2,500*t2+t6,1,t5+-500*t2-t6,1);
      }
    }
  }
  for(t4 = max(intDiv(-T+4000+3999,4000),intDiv(-t2+7+7,8)); t4 <= intDiv(-500*t2+N+3997,4000); t4++) {
    for(t5 = max(1000*t2+4000*t4-3999,-4000*t4+4000); t5 <= min(1000*t2+4000*t4-3000,2*N-4000*t4+3995,2*T+4000*t4-4000); t5++) {
      for(t6 = intDiv(t5-4000*t4-1000*t2+3998+1,2); t6 <= intDiv(t5-4000*t4-1000*t2+3999,2); t6++) {
        s3(2,500*t2+t6,1,t5+-500*t2-t6,1);
      }
    }
  }
  for(t4 = intDiv(-t2+1+7,8); t4 <= min(intDiv(-500*t2+N+3496,4000),intDiv(-1000*t2+N+T+2996,4000)); t4++) {
    for(t5 = max(500*t2+1,4000*t4+1000*t2-2999); t5 <= min(N+T-3,4000*t4+1000*t2,N+500*t2+497); t5++) {
      for(t6 = max(-N+t5-500*t2+2,0); t6 <= min(T-500*t2-1,t5-500*t2-1,499); t6++) {
        s4(2,500*t2+t6,1,t5+-500*t2-t6,1);
      }
    }
  }
  for(t4 = max(intDiv(-T+3999,4000),intDiv(-t2-1+7,8)); t4 <= intDiv(-500*t2+N-3,4000); t4++) {
    for(t5 = max(1000*t2+4000*t4+1,-4000*t4); t5 <= min(1000*t2+4000*t4+1000,2*N-4000*t4-5,2*T+4000*t4); t5++) {
      for(t6 = intDiv(-1000*t2-4000*t4+t5-2+1,2); t6 <= intDiv(-1000*t2-4000*t4+t5-1,2); t6++) {
        s5(2,500*t2+t6,1,t5+-500*t2-t6,1);
      }
    }
  }
  if (500*t2 <= T-2) {
    for(t4 = intDiv(-t2+7,8); t4 <= min(intDiv(-500*t2+N+496,4000),intDiv(-1000*t2+N+T-4,4000)); t4++) {
      for(t5 = max(1000*t2+4000*t4+1,-4000*t4+2); t5 <= min(2*T+4000*t4-2,N+T-3,N+500*t2+497,1000*t2+4000*t4+998); t5++) {
        for(t6 = max(-N+t5-500*t2+2,intDiv(t5-4000*t4-1000*t2+1,2)); t6 <= min(t5-500*t2-1,T-500*t2-1,499); t6++) {
          s6(2,500*t2+t6,1,t5+-500*t2-t6,1);
        }
      }
    }
  }
}
if (T >= 1) {
  for(t2 = intDiv(T-500+499,500); t2 <= intDiv(T-1,500); t2++) {
    for(t4 = intDiv(-T+2+3999,4000); t4 <= intDiv(N-T+3998,4000); t4++) {
      for(t5 = max(4000*t4+2*T-4001,T); t5 <= min(4000*t4+2*T-2,N+T-3); t5++) {
        s7(2,T-1,1,t5-T+1,1);
      }
    }
  }
}

# 
#