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Chapter 1

Introduction

1.1 About this release

This user manual corresponds to version 1.1 of the Omega Library. While we have tested the code extensively,
it is still research software, and we are constantly working on and improving the code. In other words, you
should expect that there are still undiscovered bugs in this software.

If you use this library, drop us a line and let us know what you’re using it for, and what you would like
to see in future releases.

1.1.1 Changes since the last release

There are several important changes from the last release.

Inexactness changes
The most visible change to programmers is that relations which contain the constraint UNKNOWN
are now handled more sanely. As a result, functions which query whether a relation is satisfiable or is a
tautology have changed to reflect the fact that you cannot always get a definitive answer in the presence
of UNKNOWN. In addition, there are new functions for checking subsets, plus two new functions for
taking upper and lower bounds of relations. Users may have to make some changes to their code in
order to compile with the new release. You can safely make the following substitutions and have your
code work as with version 1.0:

• Relation::is satisfiable to Relation::is upper bound satisfiable

• Relation::is tautology to Relation::is obvious tautology

• Is Subset to Must Be Subset

Variables types replaced by variable kinds
It used to be that variables has types, such as input variable, output variable, global variable, and so
on. To prepare the way for variables having types such as integer, enumeration and rational, and avoid
the confusion that would be caused by having both types floating around, the previous uses of variable
types were changed to variable kinds.

Old Name New Name File
Var Type Var Kind pres gen.h

Global Type Global Kind pres var.h
Var Type Var Decl::type() Var Kind Var Decl::kind() pres var.h
void set type(Var Type v) void set kind(Var Kind v) pres var.h

Global Type Global Var Decl::type() Global Kind Global Var Decl::kind() pres var.h

Convex Hull
We now provide an exact convex hull computation, as well as variations such as affine hull, linear hull
and conic hull [Sch86].
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The Uniform library
This distribution includes the Uniform library, a source to source parallelizing transformation system.

Reachability
The library now includes a function to compute graph reachablity problems.

1.2 What is the Omega Library?

The Omega Library is a set of C++ classes for manipulating integer tuple relations and sets. We use the
Omega Library in many of our research projects in the area of compilation for high-performance computers.
Current applications include dependence analysis, program transformations, generating code from transfor-
mations, and detecting redundant synchronization. It is also the basis for the Omega Calculator, which is
described separately. This manual describes how to use the Omega library in your programs.

The copyright notice and legal fine print for the Omega calculator and library are contained in the
README and omega.h files. Basically, you can do anything you want with them (other than sue us); if you
redistribute it you must include a copy of our copyright notice and legal fine print.

1.3 What are tuple relations and sets?

An integer k-tuple is simply a point in Zk. An integer tuple relation is a mapping from tuples to tuples.
The tuple that is being mapped from is refered to as the input tuple and the tuple that is being mapped to
is refered to as the output tuple. All the integer tuple relations we consider map from k-tuples to k′-tuples
for some fixed k and k′. We refer to k and k′ as the input and output arities respectively. A integer tuple

set is a set of k-tuples, for some fixed k. We’ll often abbreviate integer tuple relations and integer tuple sets
as relations and sets respectively.

The sets and relations that we use may be infinite or may depend on the values of other variables, so
it is generally not possible to describe them simply by enumerating their tuples or pairs of tuples. Instead,
we introduce variables that correspond to each of the positions in the input and output or set tuples and
construct a formula that has these and other variables as free variables. These variables are refered to as
input, output or set variables as appropriate. For example, we would represent the set of all even numbers
as: { [i] | ∃α s.t. i = 2α } In this case we introduce a single set variable because we are describing a set
of 1-tuples. The formula in this case is ∃α s.t. i = 2α, note that i is the only free variable in this formula.
If we wanted to represent the set of all positive even numbers less than n we would use: { [i] | ∃α s.t. i =
2α ∧ 0 < i < n } We refer to variables such as n as symbolic or global variables. They are global in
the sense that can be used in more than one relation and they represent the same value in all relations.
This becomes important when we apply relational operations that combine variables and constraints from
different relations. As another example, to represent the relation corresponding to integer addition we would
use: { [i1, i2] → [j1] | i1 + i2 = j1 }

The Omega library can represent relations and sets that can be described by Presburger formulas (possibly
with limited uses of uninterpreted function symbols).

1.4 What are Presburger formulas?

Presburger formulas [KK67] are those formulas that can be constructed by combining affine constraints on
integer variables with the logical operations ¬, ∧ and ∨, and the quantifiers ∀ and ∃. The affine constraints
can be either equality constraints or inequality constraints (abbreviated as EQs and GEQs respectively). For
example, the formulas in the previous section are Presburger formulas. There are a number of algorithms
for testing the satisfiability of arbitrary Presburger formulas [KK67, Coo72, PW93]. The best known upper

bound on the performance of an algorithm for verifying Presburger formulas is 22
2

n

[Opp78], and we have
no reason to believe that our method will provide better worst-case performance. However, our method may
be more efficient for many simple cases that arise in our applications.
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1.5 What are uninterpreted function symbols ?

Presburger arithmetic can be extended to allow uninterpreted function symbols. Formulas in this extended
class may contain terms representing the application of a function to a list of argument terms. For example,
the following extended presburger formula contains an uninterpreted function symbol F : 1 ≤ i ≤ i′ ≤
n ∧ F (i) 6= F (i′) ∧ 1 ≤ j, j′ ≤ m The functions are termed “uninterpreted” because the only thing we know
about them is that they are functions: two applications of a function to the same arguments will produce
the same value.

Applications of function symbols can be used to represent values that vary with the values of certain
other variables. For example, when we perform dependence analysis with the Omega Library, we would use
a scalar global variables to represent the value of a symbolic constant in the program, and a function of arity
2 to represent the values taken on by a non-linear expression nested in two loops (see [PW94] for a more
detailed discussion of, and examples of, the use of function symbols to represent non-linear terms).

Downey ([Dow72]) proved that full Presburger arithmetic with uninterpreted function symbols is undecid-
able. We therefore restrict our attention to a subclass of the general problem, and produce approximations
whenever a formula is outside of the subclass. Whenever an approximation is produced, it is marked as
either an upper bound or lower bound as appropriate. We currently restrict our attention to formulas in
which all function symbols are free, and functions are only applied to a prefix of the input or output tuple.
For example, a binary function could be applied to the first two input or the first two output variables of a
Relation (or the first two variables of a set’s tuple).

1.6 What is the UNKNOWN constraint?

A conjunction may contain the constraint UNKNOWN. UNKNOWN indicates the existence of one or more
other constraints in the Presburger formula that aren’t known. Such constraints could arise from the need
to approximate (as from some cases of uninterpreted function symbols or transitive closure), or because the
user added it to the formula. A relation which includes the UNKNOWN constraint is said to be inexact.
Inexactness can be removed by taking an upper or lower bound on the inexact relation. Inexactness is
discussed further in sections 4.4, 5.3 and 5.6, and creating upper and lower bounds is discussed in section
6.2.

1.7 Manipulating integer tuple relations and sets

A common way to use the library is to build relations and/or sets describing your particular problem, perhaps
combine them using the relational operators, and then query them in some way (checking information about
a particular variable, checking to see if its formula is satisfiable, or just printing them to the screen.)

In Chapter 4, we describe how to build new relations and sets. In Chapter 5,we describe how to examine
existing relations. This includes generating a user readable string representation of a set or relation, and ex-
amining the conjuncts and constraints of a relation once it has been simplified and converted into disjunctive
normal form (DNF). In Chapter 6, we describe how to create new relations from old relations by applying
relational operations such as intersection, union, domain, range, and composition.

In Chapter 2, we discuss some issues related to the compilation of the Omega Library and programs that
use it. In Chapter 3, we describe some of the primitive data structures used in the library (such as strings
and tuples).
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Chapter 2

Compiling And Running Programs
With The Omega Library

2.1 Introduction

To use the Omega Library in an existing C++ application, it is necessary to:

• Use the makefile included in the release to make libomega.a if it doesn’t already exists.

• Include -lomega as an option to the linker.

• Include -Ldir as an option to the linker, where dir is a directory that contains libomega.a.

• Add the line #include "omega.h" to each application source file that references Omega library data
structures or functions.

• If the include file omega.h and the associated omega subdirectory have not been placed in a standard
include directory on your system, use -Idir/include as an option to the compiler, where dir is a
directory that contains the include directory from this release.

• Make any modifications that are needed to get the Omega Library and your code to compile with
compatible compilers (see Section 2.3).

2.2 Avoiding Name Collisions

Some of the global names in our library are simple enough that they may conflict with names used in your
code or some other library you use. We have taken the following steps to ensure that such conflicts can be
resolved easily - these are based on vague memories of something from the documentation of the InterViews
project, so to the degree that the approaches are similar, that project should get the credit. In a header file
that defines an obvious name, such as String, we replace (via #define) that name with some less obvious
name, such as Omega String. This ensures that these obvious names do not appear in the library, even
though we use them in our code.

In case of conflict, just #undef the obvious name after the inclusion of omega.h, but before the inclusion
of the header file that causes the conflict. For example, if you need to use both the Omega Library and
Motif (which defines the name String), first #include omega.h, then #undef String (or, alternatively,
#include omega/basic/leave String.h, which does this), and then #include the necessary Motif header
files.

If you find a conflict in a header that we have not prepared as described above, let us know so that we
can fix this in the next release. In the meantime, it should be fairly easy to install this fix yourself and
re-compile.
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2.3 Compiling Templates

This software should compile correctly with either g++ 2.5.8 or g++ 2.6.3, as long as the proper flags are
used (-fno-implicit-templates and -DDONT INCLUDE TEMPLATE CODE for g++ 2.6.3). We take advantage
of some of the new features of g++ 2.6.3 to ensure that the code for templates is not duplicated (this reduces
the size of the executable by about 2

3
). This makes the compilation a bit more complicated: this section

describes some of the techniques we use to make it work reasonably well.
A parameterized class’s declaration is in a “.h” file and the code for its member functions in a “.c” file.

The “.c” files for parameterized classes are kept in the include directory, as they are #include-d rather
than compiled separately. Each class’ “.h” file also contains a macro that expands to list all the other
templates associated with a template you might be using. These macros, including those for types used
by the Omega Library, should all be used expanded in one file, to avoid redundant definitions. The file
“include/omega/PT-omega.c” contains a list of all the templates used by the Omega Library, and can be
used to simplify the construction of a single file that contains all parameterized types. For example, the file
“PT.c” is used in the compilation of the Omega Calculator: It #includes omega/PT-omega.c and explicitly
lists the other parameterized types used by the calculator.

The functions of these features depend on the compiler being used:

G++ 2.5.8

The declaration and definition of all template functions must be given in every header file. To accomplish
this, the header file for a given class #includes the “.c” file with the code for that class’s member functions.
The “.c” file should not be compiled directly. “PT-omega.c” and “PT.c” are not needed - fortunately g++
2.5.8 ignores their contents.

G++ 2.6.3

The definitions of the external template functions must not be included in multiple source files. We therefore
use -fno-implicit-templates and -DDONT INCLUDE TEMPLATE CODE when compiling - the latter prevents
inclusion of the “.c” files by the headers. The file “PT.c” #undefs DONT INCLUDE TEMPLATE CODE before
including the headers, so it will get the function definitions. It #includes “PT-omega.c”, so this one source
file will contain a copy of each template needed anywhere in the Omega Calculator. Note that our instantiate
macros contain some redundancies, and the compiler will issue warnings about them, so warnings for PT.c

are turned off in the makefile.

2.4 G++ 2.7.2

The library can also be compiled with G++ 2.7.2, using the same options as for G++ 2.6.3. Due to some
changes in the C++ language standard, the compilation produces lots of warnings, but correct code is
produced.

The first change is to the scope of variables declared inside a for loop. Most of our code has been adapted
to use syntax that works with both the old and new rules. We use the -fno-for-scope option to allow the
old syntax in places where it hasn’t been fixed. Eventually, we will convert all such loops, but until most
compilers use the new scoping, we want to allow the use of older compilers.

The second change is to prohibit passing an rvalue as a non-const reference parameter. We often re-use
parts of Relations in relational operators, which destroys them; to avoid this destruction when passing a
relation, we use a copy function. Unfortunately, this results in a warning, since the result of copy is an
rvalue. We hope to address this problem in a future release.

Other C++ compilers

Please let us know if you succeed in getting our code to compile with something other than g++.
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2.5 Debugging information

The library has some internal debugging output that you can turn on. It may not be useful to you, since it
makes reports about internal functions of the library.

All debugging goes to the file DebugFile, which defaults to stderr. You can assign a FILE* to that
variable to redirect debugging output. To turn off all debugging, call the function all debugging off().
To use the flags as they are used in the calculator (without the calculator debugging flag) call the func-
tion process pres debugging flags(char *arg,int &j) where arg points to a character string with [let-
ter][digit] pairs, each [digit] is between 1 and 4, and j is an offset into the string at which to start processing
flags. If the digit is omitted, it is assumed to be 1. The letters mean:

• a: all debugging flags

• c: omega core internal debugging

• g: code generation debugging

• p: Presburger formula debugging (simplification, creation)

• r: relational operators

• o: print results upon exiting omega core

• t: transitive closure debugging

As an example, your program might use the -D flag to introduce Omega library debugging flags, and a
use of this might be -Dp1r1. Your code should recognize the -D flag and pass a pointer to the beginning of
the p1r1 string to process pres debugging flags.

2.6 Enabling one-pass linking

The g++ compilers perform linking in one pass. This puts some restrictions on the structure of the library
being linked. Namely, it should be possible to topologically sort all the library object files according to the
call graph. This restriction doesn’t apply to the virtual functions, which are always linked in. Unfortunately,
the logical structure of the Omega library does not allow to us distribute functions among the files in a such
a way that this restriction holds. To resolve this problem, we force some functions to be always linked into
the executable (just as the virtual functions are always linked in.) This is implemented in the lib hack.c

file, whose only purpose is to enable this trick. The target check order in the makefile allows you to check
that a correct ordering of functions in the library exists (accounting for the functions that are always linked).
You never need to do this if you only use the functions the library provides; only users who extend the library
should ever need to check this.
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Chapter 3

Primitive Data Structures

The library uses a few generic data structures extensively. All of these data structures are templatized, so
they can be used with any type that defines the comparison operations they require. This section provides
an introduction to the most frequently used operations defined on these data structures.

3.1 Collections and Iterators

All of the one dimensional collection types we use are derived from the Collection class. The elements
contained in a collection can be examined via the creation of an iterator - different collections will have
different kinds of iterators, all of which are derived from class Iterator. Any collection must be able to
allocate (via new) the appropriate type of iterator. The iterator can be dereferenced (via operator *) to
access the current element or incremented (via operator ++) to move to the next element. If an iterator
is used where a boolean is required (e.g. in the conditional expression of a for loop), the operator bool()
function will return true iff there are more elements to be iterated over. The class declarations include the
following lines:

template<class T> class Collection {

public:

Iterator<T> *new_iterator();

Any_Iterator<T> any_iterator();

int size() const;

};

template<class T> class Iterator {

public:

T & operator*();

void operator++();

operator bool() const;

};

We can therefore enumerate the elements of any collection as follows:

int sum(Collection<int> &c)

{

Iterator<int> *i;

int s = 0;

for (i = c.new_iterator(); (*i); (*i)++)

s += *(*i);
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delete i;

return s;

}

As it is easy to forget that the new iterator must later be deleted, we have provided the type
Any Iterator, which handles this issue automatically.

int sum(Collection<int> &c)

{

int s = 0;

for (Any_Iterator i = c.any_iterator(); i; i++)

s += *i;

return s;

}

Caveats

If a collection is changed (elements are added or removed), all the behavior of any iterators on that collection
is, in general, not defined.

Both the new iterator and any iterator functions cause heap allocation. If we know what kind of
collection we are working with, we can avoid the overhead inherent in this allocation by using a specialized
iterator for that type of collection (such as a List Iterator for a List, as in Section 3.3).

Note that iterators can also be manipulated via an alternate set of functions: live(), curr(), and
next(). These are particularly useful in a debugger, where the other syntax can be difficult to use.

Many classes in the Presburger library have iterators to walk through the structure – iterators over
conjunctions in a formula in disjunctive normal form, iterators over constraints in a conjunction, or iterators
over variables in a constraint. These will be discussed in more detail later.

3.2 Sequences

Collections in which the elements are ordered are derived from class Sequence. The elements of a sequence
can be accessed via subscripting, though the efficiency of this operation varies with the particular kind of
sequence. The index function gives the index of an element - for any value v in a list l, l[l.index(v)] ==

v.
Note that subscripts start an 1, not 0; the index function returns 0 if the element is not in this list.

3.3 Lists and Tuples

The most commonly used collections are List and Tuple; you may also encounter Bag, Ordered Bag and Map
(which is not derived from Collection), although no public functions return these types.

Lists are sequences with O(n) access time for the nth element. They add the following operations to
those of class Sequence:

template<class T> class List : public Sequence<T> {

public:

int length() const;

int empty() const;

T &front();
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// insertion/deletion on a list invalidates any iterators

// that are on/after the element added/removed

T remove_front();

void prepend(const T &item);

void append(const T &item);

void ins_after(List_Iterator<T> i, const T &item);

void del_front();

void del_after(List_Iterator<T> i);

void clear();

void join(List<T> &consumed);

};

Tuples are essentially re-sizable arrays: they provide O(1) time access to elements. They provide bounds
checking.

template <class T> class Tuple : public Sequence<T> {

public:

Tuple<T>& operator=(const Tuple<T>&);

int length() const;

int empty() const;

void delete_last();

void append(const Tuple<T> &);

void append(const T &);

void join(Tuple<T> &consumed);

void clear();

};

These classes have associated iterator classes: List Iterator and Tuple Iterator, which can be ini-
tialized with a List or Tuple to be iterated over, allowing iteration without the overhead of heap allocation
that is incurred when we use the more general new iterator or any iterator functions:

int sum(List<int> &l)

{

int s = 0;

for (List_Iterator<int> i = l; i; i++)

s += *i;

return s;

}

3.4 Generators

Generators are similar to iterators in that they provide us with sequential access to a collection of values.
Iterators provide read and write access to elements that are actually stored in some collection. The sequence
of values provided by a generator need not actually be stored in any collection, and thus a generator does
not provide an lvalue.
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Chapter 4

Building New Relations

The upcoming chapters will share three running examples; the figures that contain the code can be concate-
nated to produce a valid example program for the Omega Library (the file library example.c, distributed
with the postscript file for this manual, contains this code). We will see how to create the following very
simple set, slightly more complicated set, and relation:

S1 := { [t] | 1 ≤ t ≤ n };

S2 := { [x] | (0 ≤ x ≤ 100 ∧ ∃y s.t. (2n ≤ y ≤ x ∧ y is odd)) ∨ x = 17 };

R := { [i, j] → [i′, j′] | 1 ≤ i ≤ i′ ≤ n ∧ ¬(F (i) = F (i′)) ∧ 1 ≤ j, j′ ≤ m };

In this chapter, we’ll describe how to construct relations and sets from scratch. We’ll describe how to
declare relations; create and use the variables used within Presburger formulas; and how to build Presburger
formulas that describes membership in the set or relation.

4.1 Creating relations

What we’ve referred to up until now as “sets” and “relations” are implemented as a single class, Relation.
Each relation is marked as being either a set or a relation. Most functions on relations don’t care whether
they operate on sets or relations, but some require either a set or a relation, and they will check.
We provide the following constructors for Relations:

Relation()

This is a default constructor for the class. Relations created this way are known as null relations and
must be assigned a value before they can be used. This constructor is provided to allow the creation
of arrays of relations.

Relation(int n input, int n output);

This constructor creates a relation with n input input variables and n output output variables. It
can’t be used in any functions yet, because it doesn’t have a Presburger formula to describe which
tuples it contains.

Relation(Non Coercible<int> nci);

This constructor creates a set. In normal use, you should pass an int to this function to get a set
with that many variables in its tuple. (The class Non Coercible<int> is used as a C++ trick so that
you couldn’t, for example, pass an int to a function expecting a Relation, and have the compiler
construct a Relation from it on the fly.)

Relation(const Relation &r, Conjunct *c)

This is used to create a relation by copying a conjunction of constraints c, from some other relation r.
Conjuncts are created when a relation is simplified into disjunctive normal form and will be described
in Chapter 5.

12



The input, output, or set variables can be given names:

void Relation::name input var(int nth, String s)

Set the name of the nth input variable to s.

void Relation::name output var(int nth, String s)

Set the name of the nth output variable to s.

void Relation::name set var(int nth, String s)

Set the name of the nth set variable to s.

If you don’t name the variables yourself, each variable will get a name that depends on its position in
the input or output tuple. If two variables in the same relation are given the same name, the print functions
will add “primes” to one of them to distinguish them.
The following are some simple functions that extract information about a set or relation:

bool Relation::is set()

Return true if the relation is a set, false if it is a relation.

int Relation::n inp()

Find out how many variables are in a relation’s input tuple.

int Relation::n out()

Find out how many variables are in a relation’s output tuple.

int Relation::n set()

Find out how many variables are in a set’s tuple.

The first six lines of Figure 4.1 show how the Relation constructors and some of the functions above are
used to create the relations in our examples.

4.2 Building formulas

Presburger formulas are represented as a tree of formula nodes. Formula is the base class from which
all classes of formulas nodes are derived. Depending on their class, formula nodes can have zero or more
children. Children can be either other formula nodes or “atomic” constraints (single equality, inequality, or
stride constraints). Formula is an abstract base class; a plain Formula node can never be used in a tree.
The various subclasses of formulas are:

F And

Represents the logical conjunction of its children nodes. An F And node with no children represents
“True”. In our current implementation, atomic constraints can only be added as children of F And

nodes.

F Or

Represents the logical disjunction of its children nodes. An F Or node with no children represents
“False”.

F Not

Represents the logical negation of its single child node.

F Declaration

This subclass of Formula is the abstract base class for all subclasses of Formula that can contain
variable declarations.

F Forall

F Forall nodes have associated with them one or more variables. These variables are universally
quantified in the formula represented by the F Forall node’s single child node.

13



#include <omega.h>

main()

{

Relation S1(1), S2(1), R(2,2);

S1.name_set_var(1, "t");

S2.name_set_var(1, "x");

assert(!R.is_set());

assert(S1.is_set());

assert(S2.is_set());

Free_Var_Decl n("n");

Free_Var_Decl m("m");

Free_Var_Decl f("F", 1);

Variable_ID S1s_n = S1.get_local(&n);

Variable_ID S2s_n = S2.get_local(&n);

Variable_ID Rs_n = R.get_local(&n);

Variable_ID Rs_m = R.get_local(&m);

Variable_ID Rs_f_in = R.get_local(&f, Input_Tuple);

Variable_ID Rs_f_out = R.get_local(&f, Output_Tuple);

Variable_ID i = R.input_var(1);

Variable_ID j = R.input_var(2);

Variable_ID i2 = R.output_var(1);

Variable_ID j2 = R.output_var(2);

Variable_ID t = S1.set_var(1);

Variable_ID x = S2.set_var(1);

Figure 4.1: Example, Part 1: Declaring Relations and Variables
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F Exists

F Exists nodes have associated with them one or more variables. These variables are existentially
quantified in the formula represented by the F Exists node’s single child node.

Children can be added to any subclass of formula using the following member functions. They all return
pointers to the newly created child node.

F And * Formula::add and()

F Or * Formula::add or()

F Not * Formula::add not()

F Forall * Formula::add forall()

F Exists * Formula::add exists()

The F And * Formula::and with() member function is also useful. Its effect is equivalent to replacing
the formula that it is called on with an F And node with the old formula as one of its children and another
F And node as its other child. This second F And node is returned as the result.

Analogous versions of these member functions exist for the Relation class. A Relation can have only
one child formula node.

In many cases, it is necessary to create a relation that contains all pairs of tuples (its formula is “True”),
or that contains no pairs of tuples (its formula is “False”.) It is possible to use the above constructors
and member functions to create such relations. But since these relations are so common, we provide a
shorthand way of creating them. The static member functions Relation Relation::True and Relation

Relation::False return relations or sets with “True” and “False” respectively as their formulas. If one
integer argument is provided then a set is returned this arity. If two integer arguments are provided then a
relation is returned with these input and output arities respectively.

4.3 Referring to variables

An object of class Var Decl represents all uses of a variable in a particular relation. Var Decls should never
be created explicitly by application programs; they are created implicitly by member functions of various
library classes. We will usually use Variable IDs, which are pointers to Var Decls, to refer to such objects.
To create constraints on a particular variable, it is necessary to determine the Variable ID of that variable
in the relation to which we want to add the constraints.
We now explain how to obtain Variable IDs for various types of variables:

Input, output, and set variables
The Relation member functions input var(int n), output var(int n), and set var(int n) pro-
duce Variable IDs for the nth variable in the appropriate tuple. It is illegal request an input or output
variable of a set, or to request a set variable from a relation.

Quantified Variables
The member function Variable ID F Declaration::declare creates a new Var Decl and add it to
the list of variables associated with the F Declaration node that it is called on. It returns the
Variable ID for the newly created variable in the current relation. If a String is specified as an
argument to the member function then that String is recorded as the name of that variable, otherwise
the variable remains unnamed.

Scalar Global Variables
The variables we have seen so far have all been local to a single relation. Global variables, on the
other hand, may be shared between relations. A global variable is created by creating an object of a
class derived from Global Var Decl. The class Free Var Decl is an example of such a class, and is
used for the global variables in the code in our examples (e.g., the creation of the global variables n
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and m in Figure 4.1)). New subclasses of Global Var Decl can be created to keep track of any addi-
tional information that applications may want to record about global variables. The member function
Variable ID Relation::get local(const Global Var Decl *) is used to return the Variable ID

of a scalar global variable in a particular relation. In Figure 4.1, the Variable ID Rs n is used to
identify the global variable n in the relation R.

Global Variables Representing Uninterpreted Function Symbol
As was the case for scalar global variables, global variables representing uninterpreted function sym-
bol are created by creating objects of a class derived from Global Var Decl. Once again, class
Free Var Decl is an example of such a class, but this time we need to use a Free Var Decl construc-
tor that allows us to specify an arity, as shown by the creation of f in Figure 4.1. The enumeration
Argument Tuple, which contains the values Input Tuple, Output Tuple, and Set Tuple, is used to
specify the tuple to which an uninterpreted function symbol is to be applied. Since an uninterpreted
function symbol can be applied to both the input and output tuple of a relation, two Var Decls per
relation may be necessary: one for the function applied to the input tuple and the other for the function
applied to the output tuple. The member function Relation::get local(const Global Var Decl *,

Argument Tuple). is used to return the Variable ID of one of these Var Decls depending on which
Argument Tuple is requested. For example, we use this function to get the Variable ID’s for Rs f in

and Rs f out for the global variable f in Figure 4.1.

There are a few things you can find out about a variable given its Variable ID:

String Var Decl::base name

The name of the variable without primes.

Var Kind Var Decl::kind()

Returns the kind of the variable; one of {Input Var, Output Var, Set Var, Global Var, Forall Var,
Exists Var, Wildcard Var} (a Wildcard Var is equivalent to an existentially quantified variable, but
appears only in simplified relations).

int Var Decl::get position()

If the variable is an input, output, or set variable, returns its position in the tuple.

Global Var ID Var Decl::get global var()

If a variable corresponds to a global variable, returns its Global Variable ID.

Argument Tuple Var Decl::function of()

If a variable corresponds to a global variable, returns the argument to which it is being applied.

Note that there is no way to find out which relation a Variable ID is associated with, and our imple-
mentation is free to either share Variable IDs between relations or not (i.e., the result of S1.set var(1)

== S2.set var(1) is not defined).
Figures 4.3 and 4.3 show many uses of formula building functions, as well as the creation of many equality

and inequality constraints (see below). The creation of the variable y in the middle of Figure 4.3 shows the
use of F Declaration::declare(Const String).

4.4 Building atomic constraints

Atomic constraints come in three forms: equalities of the form
∑

aixi + a0 = 0, inequalities of the form∑
aixi + a0 ≥ 0, and stride constraints (

∑
aixi + a0 is divisible by step).

Atomic constraints are manipulated using the EQ Handle, GEQ Handle, and Stride Handle classes. These
are derived from the class Constraint Handle. They are referred to as “handles”, because atomic constraints
do not exist as independent objects. Instead, they are components of another class that is known only to the
implementation; each Constraint Handle contains information about how to access a particular constraint.
The following functions can be used to add an atomic constraint to an F And:
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F_And *S1_root = S1.add_and();

GEQ_Handle tmin = S1_root->add_GEQ(); // t-1 >= 0

tmin.update_coef(t, 10);

tmin.update_coef(t, -9); // t now has coef. 1

tmin.update_const(-1);

GEQ_Handle tmax = S1_root->add_GEQ(); // n-t >= 0

tmax.update_coef(S1s_n,1);

tmax.update_coef(t, -1);

F_Or *S2_root = S2.add_or();

F_And *part1 = S2_root->add_and();

GEQ_Handle xmin = part1->add_GEQ();

xmin.update_coef(x,1);

GEQ_Handle xmax = part1->add_GEQ();

xmax.update_coef(x,-1);

xmax.update_const(100);

F_Exists *exists_y = part1->add_exists();

Variable_ID y = exists_y->declare("y");

F_And *y_stuff = exists_y->add_and();

GEQ_Handle ymin = y_stuff->add_GEQ();

ymin.update_coef(y,1);

ymin.update_coef(S2s_n,-2);

GEQ_Handle ymax = y_stuff->add_GEQ();

ymax.update_coef(x,1);

ymax.update_coef(y,-1);

Stride_Handle y_even = y_stuff->add_stride(2);

y_even.update_coef(y,1);

y_even.update_const(1);

F_And *part2 = S2_root->add_and();

EQ_Handle xvalue = part2->add_EQ();

xvalue.update_coef(x,1);

xvalue.update_const(-17);

Figure 4.2: Example, Part 2: Adding Constraints to S1 and S2

17



F_And *R_root = R.add_and();

GEQ_Handle imin = R_root->add_GEQ();

imin.update_coef(i,1);

imin.update_const(-1);

GEQ_Handle imax = R_root->add_GEQ();

imax.update_coef(i2,1);

imax.update_coef(i,-1);

GEQ_Handle i2max = R_root->add_GEQ();

i2max.update_coef(Rs_n,1);

i2max.update_coef(i2,-1);

EQ_Handle f_eq = R_root->add_not()->add_and()->add_EQ();

f_eq.update_coef(Rs_f_in,-1);

f_eq.update_coef(Rs_f_out,1); // F(In) - F(Out) = 0

GEQ_Handle jmin = R_root->add_GEQ();

jmin.update_coef(j,1);

jmin.update_const(-1);

GEQ_Handle jmax = R_root->add_GEQ();

jmax.update_coef(Rs_m,1);

jmax.update_coef(j,-1);

GEQ_Handle j2min = R_root->add_GEQ();

j2min.update_coef(j2,1);

j2min.update_const(-1);

GEQ_Handle j2max = R_root->add_GEQ();

j2max.update_coef(Rs_m,1);

j2max.update_coef(j2,-1);

Figure 4.3: Example, Part 3: Adding Constraints to R
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EQ Handle F And::add EQ()

Creates an equality constraint as a child of the F And node and returns a EQ Handle for this constraint.
All variables implicitly have a coefficient of zero in this constraint.

GEQ Handle F And::add GEQ()

Creates an inequality constraint as a child of the F And node and returns a GEQ Handle for this con-
straint. All variables have an implicit coefficient of zero in this constraint.

EQ Handle F And::add stride(int step)

The effect of this function is equivalent to creating an F Exists node with a new variable alpha as
a child of the F And node and creating an equality constraint as a child of the F Exists node. The
coefficient of alpha in this constraint is step and the coefficients of all other variables is implicitly zero.
This can be used to add constraints like “y is odd” or “x+2y+17 is divisible by 3”.

void F And::add unknown()

Adds an unknown constraint as a child of the F And node, thus making the formula an upper bound
(see Section 5.6). You don’t need to use this function unless you are creating an inexact relation.

Sometimes you may have a relation (perhaps passed in to a function) that you want to modify by adding
some constraints to it, but you don’t have any pointers into the formula. In these situations, you can use the
functions Relation::and with GEQ and Relation::and with EQ. The affect of calling these functions without
arguments, on a relation R, with formula f, is equivalent to creating a constraint e of the appropriate type,
changing R’s formula to be an F And node with f and e as children and returns a Constraint Handle of
the appropriate type for e. All variables have an implicit coefficient of zero in e. There’s another version
of this function that allows you to copy constraints between relations. If you call either function with a
Constraint Handle c as an argument, the affect is the same except that the coefficients of e are set to be
the same as the coefficients of c. Notice that the latter form allows you to convert EQ’s to GEQ’s and
vice-versa; the coefficients are copied, and the resulting constraint just has the semantics of whatever kind
of constraint you asked for. It’s a little confusing, but it saves you from copying each coefficient individually.
The coefficients of variables and the constant terms in constraints can be updated by using the following
member functions: functions:

void Constraint Handle::update coef(Variable ID, int delta)

Add delta to the coefficient of the variable corresponding to Variable ID.

void Constraint Handle::update const(int delta)

Add delta to the constant term of the constraint.

void Constraint Handle::multiply(int multiplier)

Multiply each coefficient and the constant term by multiplier.

Warning: Remember that these functions add delta to the current value of a coefficient. There is no
way to simply set a coefficient. This provides us with certain freedoms in our implementation, but it does
make coding a bit trickier.

Setting numbers of EQs and GEQs

The library allows you to set the number of EQs and GEQs that are available in each problem. As this
increases, the library can handle larger and larger problems, but memory use increases as well. If you need
to solve large problems, you may have to increase these values. If you need to have many relations existing
at the same time, you may need to decrease these values.

The variables to set are maxGEQs and maxEQs. They default to 70 and 35 respectively. If you set these
variables, they must be set before you use the Omega Library. If you create any relations, and then change
the value of these variables, you will get crashes.
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4.5 Finalization

Many of our data structures can be finalized when they are complete. This is done via the various finalize()
member functions. Adding new constraints to a structure that has been finalized is illegal. Explicit finaliza-
tion allows the implementation to perform certain simplifications of constraints, which can improve efficiency
in some cases. For example, we could provide an optimization that simply discards any constraints that are
added to an F Or that contains a tautology (this optimization is not currently in the library, but it is easy
to explain). We can only be sure that one of the children is a tautology after it has been finalized: otherwise
we would have to consider the possibility of the programmer adding something like ∧1 = 2 to this child,
in which case it is no longer a tautology. Since finalization does not affect the relation, we have not shown
its use in our examples. However, finalization is important to achieving maximum efficiency. If you are
concerned with efficiency, you should finalize each part of a relation as soon as you have finished building
it.
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Chapter 5

Querying Existing Relations

This chapter outlines some ways to examine, simplify and query relations that you have built.

5.1 Relations during and after queries

Relations may be simplified to respond to a query, so you may see some changes in a relation if you print it
before and after a query. For example, if you build a relation, print it with Relation::print(), then ask
if it is empty, and then print it again, the formula in the second print will be different from but equivalent
to the first one. Relation::print with subs() would show no difference between those two calls, since it
copies the relation and simplifies it in order to print it.

So, once you begin to query a relation, the Presburger formula may change unexpectedly. Since the
structure of the formula changes, there are restrictions on the operations you can perform. Specifically,
most of the relation building operations are no longer available (in other words, it is implicitly finalized).
You can no longer add constraints to F And nodes, and you can no longer add new Formula nodes to any
part of the formula. The only way to modify the Presburger formula after beginning to query it is to use
Relation::and with EQ or Relation::and with GEQ.

If you wish to force a simplification of a relation for some reason, use the function Relation::simplify().
This is a hint to the library that it might be a good idea to simplify the relation immediately. You might
want to do this on a relation that has a complicated formula, before you combine it with others using the
functions in Chapter 6. Sometimes, this can speed up execution or reduce memory requirements.

5.2 Printing

The simplest way to examine a relation is to print it to the screen or to a file. The following member
functions of Relation print relations in a number of different ways.

void Relation::print()

void Relation::print(FILE *output file)

A basic function to print the relation for humans to read.

void Relation::print with subs(FILE *output file, bool printSym=false)

String Relation::print with subs to string(bool printSym=false)

These functions attempt to print the relation in an easy-to-understand format. At each input variable
and output variable, they try to print the variable as an affine function of the variables to the left. The
variable printSym controls whether the set of symbolic variables used in the relation are printed.

void Relation::prefix print(FILE *output file)

This is a print function used primarily to debug programs that use the library. It is designed to make
clear the structure of the formula tree and show the details of the variables used in the formula.
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void Relation::prefix print()

This is the same as the other version of prefix print, but it prints to stdout.

String Relation::print formula to string()

This allows you to extract a printed representation of the relation’s formula, without the input and
output variables being printed.

5.3 Simplification and satisfiability

A basic function of the library is checking whether a relation is empty (its Presburger formula is unsatisfiable),
or whether a relation contains all possible tuples (its Presburger formula is a tautology).

In some cases, due to inexact formulas, it is not possible to answer these questions definitively; we
need to describe them in terms of upper and lower bounds on the relation. The upper bound is computed
by assuming all UNKNOWN constraints evaluate to true. The lower bound is computed by assuming all
UNKNOWN constraints evaluate to false. (Functions to compute these bounds are described in section 6.2.)

The following member functions to check these conditions.

• bool Relation::is upper bound satisfiable()

Return true if the relation’s Upper Bound is satisfiable; that is, treat UNKNOWN constraints as true,
then check satisfiability.

• bool Relation::is lower bound satisfiable()

Return true if the relation’s Lower Bound is satisfiable; that is, treat UNKNOWN constraints as false,
then check satisfiability.

• bool Relation::is satisfiable()

Included for compatibility with older releases. Asserts that the results of is upper bound satisfiable

and is lower bound satisfiable are equal, then returns the result.

• bool Relation::is obvious tautology()

Return true if the relation’s formula evaluated to a single conjunction with no constraints. Some
tautologies will not fit this description.

• bool Relation::is definite tautology()

Returns true if the relation’s formula is a tautology.

The following functions allow you to inquire about inexactness in the relation:

• bool Relation::is exact()

Returns true if the relation’s formula does not contain UNKNOWN.

• bool Relation::is inexact()

Returns true if the relation’s formula contains UNKNOWN.

• bool Relation::is unknown()

Returns true if the relation’s formula is the single constraint UNKNOWN.

Figure 5.3 shows some uses of these functions on the sets and relation we built in the previous chapter.

5.4 Querying variables

The function Relation::global decls() returns a pointer to the collection of Variable IDs that contains
all the uses of global variables in the relation. This collection may include some global variables that have
been eliminated during simplification.

The function Relation::query difference(Variable ID v1, Variable ID v2, int &lowerBound,

int &upperBound, bool &guaranteed) can be used to determine bounds on the possible value of v1 -
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S1.print_with_subs(stdout);

assert(S1.is_upper_bound_satisfiable());

assert(!S1.is_tautology());

S1.print_with_subs(stdout); // same as above print

printf("\n");

S2.print();

assert(S2.is_upper_bound_satisfiable());

assert(!S2.is_tautology());

S2.print(); // different from above

printf("\n");

assert(R.is_upper_bound_satisfiable());

assert(!R.is_tautology());

R.print_with_subs(stdout);

int lb, ub;

bool coupled;

R.query_difference(i2, i, lb, ub, coupled);

assert(lb == 1); // i < i2: i2 - i1 > 0

assert(ub == posInfinity);

for(DNF_Iterator di(R.query_DNF()); di; di++)

{

printf("In next conjunct,\n");

for(EQ_Iterator ei = (*di)->EQs(); ei; ei++)

{

printf(" In next equality constraint,\n");

for(Constr_Vars_Iter cvi(*ei); cvi; cvi++)

printf(" Variable \%s has coefficient \%d\n",

(*cvi).var->char_name(),

(*cvi).coef);

}

for(GEQ_Iterator gi = (*di)->GEQs(); gi; gi++)

{

printf(" In next inequality constraint,\n");

for(Constr_Vars_Iter cvi(*gi); cvi; cvi++)

printf(" Variable \%s has coefficient \%d\n",

(*cvi).var->char_name(),

(*cvi).coef);

}

printf("\n");

}

Figure 5.1: Example, Part 4: Querying Relations
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v2. Note that these bounds are not necessarily tight. After this call, guaranteed will be true if these bounds
are guaranteed to be tight. If the difference is not bounded below, lowerBound will be negInfinity. If the
difference is not bounded above, upperBound will be posInfinity. These constants are defined in “oc.h”,
which is included by “omega.h”.

5.5 Iterating through a DNF

Much of the power of the Omega library lies in the ability to walk through the simplified conjunctions (and
their constraints) that define a relation. In this section, we’ll describe method to do that.

To perform more detailed queries on a relation, we must tell the Omega Library the desired form of
the results, and the amount of effort (time) that should be expended in trying to eliminate redundancies.
Currently, the only form of query that is supported is disjunctive normal form, though in the future we may
include disjoint disjunctive normal form, or a form that contains only inequality constraints.

To request that a relation be simplified to DNF, use the function query DNF. This returns a pointer to
a DNF (we discuss how to use a DNF below). Several levels of simplification are available. Increased effort
levels result in better elimination of redundant information in the formula. You can set this level for both
removing redundant constraints within a conjunction, or for removing entire conjuncts that are redundant
with some other part of the formula. These levels are given as arguments to query DNF. If no arguments are
given, the levels default to (0,0), the lowest level of effort. The current effort levels are given below:

Conjuncts Constraints

0 Nothing extra Nothing extra

1 Perform simple check for redundant conjunts Remove constraints made redundant by any two others

2 Exact test to see if any conjunct is subset of any other Exact test to see if any constraint is redundant

4 Also perform expensive tests to simplify form of

constraints

The best way to traverse the formula is by using a series of iterator classes. The overall method to
traversing a simplified formula is:

for each conjunct in the DNF
for each equality constraint in the conjunct

for each variable in the constraint
perform some action

for each GEQ constraint in the conjunct
for each variable in the constraint

perform some action

Most often, you will use the DNF * returned from query DNF to initialize a DNF Iterator, which allows
you to traverse a list of Conjuncts, which represent the individual conjunctions in the DNF. Note that if you
change the relation destructively after obtaining a simplified DNF from it, neither the result of a previous
query DNF call nor any iterators constructed from it will remain valid.

Examining constraints in a Conjunct

You can iterate through the EQs or the GEQs in a Conjunct, or both. To browse the EQs, either give
the Conjunct as an argument to the EQ Iterator constructor, or assign the result of the Conjunct::EQs()

function to an existing EQ Iterator. When you dereference an EQ Iterator, it returns an EQ Handle. The
analogous techniques apply to GEQ Iterators, to iterate through the GEQs, or to Constraint Iterators,
to iterate through both the EQs and the GEQs.

We have already seen the use of Constraint Handles (and its subtypes EQ Handle and GEQ Handle) to
build constraints. In this context, a Constraint Handle (and its derived types) is used only to examine con-
straints; you cannot modify the constraints returned from any constraint iterator. The following operations
are used to query a constraint.

• int Constraint Handle::get coef(Variable ID v)
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• int Constraint Handle::get const()

• bool Constraint Handle::has wildcards()

Here is an example of examining the constraints in a Relation. This loop finds all the GEQs involving
v in all Conjunct C from Relation R1, and “ands” them with Relation R2’s formula. The only caveat to
doing this is that R2 must have at least as many variables in its tuples as R1 does.

for(DNF_iterator di(R1.query_DNF()); di; di++)

for(EQ_Iterator ei = (*di)->EQs(); ei; ei++)

if((*ei).get_coef(v) != 0)

R2.and_with_GEQ(*ei);

(Note: this may not be as useful as it looks, if the conjunct from R1 contains existentially quantified
variables (which, since R1 is simplified, will actually be of the tyep Wildcard Var). In that case, since each
constraint is copied individually, the correspondence between two uses of the same quantified varaible will
be lost.)

You could also loop through all the variables in each conjunct and check their coefficients in each con-
straint:

You can also loop through all the variables in the conjunct and check their coefficients in each constraint;

for(DNF_iterator di(R1.query_DNF()); di; di++)

for(EQ_Iterator ei = (*di)->EQs(); ei; ei++)

for(Variable_Iterator vi = (*di)->variables(); vi; vi++)

Since this is a common thing to do, there’s a special iterator class that allows you to walk through all
the variables that appear in a particular constraint, and get their coefficients. It’s called Constr Vars Iter.
There’s also a version of it that will show you only the existentially quantified variables. (An easy way to
check if a constraint involves any existentially quantified variables is to get that kind of iterator and check
if it is live.)

For a Constr Vars Iter, the return value is a Variable Info structure. It contains a Variable ID and an
integer for its coefficient in the constraint. You can also use the special functions Variable ID curr var()

and int curr coef() to get that information.
The for loop in Figure 5.3 shows an example of the use of these query functions that is redundant with

the existing printing functions, but serves to illustrate the query operations.

5.6 Inexact relations

The Omega Library provides a way to work with inexact relations. We say that relation is inexact if one
or more of its conjuncts contain UNKNOWN constraints. We call any conjunct that contains unknown
constraints an inexact conjunct, and the conjunct that contains only unknown constraints an unknown
conjunct. To inquire about this property of the conjunct you can use the is exact(), is inexact() and
is unknown() member functions of the Conjunct class.

An exact part of the relation containing an unknown conjunct provides a lower bound on the relation.
An exact part of the relation containing inexact conjunct(s) provides an upper bound on the relation. Note,
that an inexact conjunct can be always approximated by the unknown conjunct so a simplified relation can
not contain both inexact and unknown conjuncts. Thus, a relation can be either exact, a lower bound, or an
upper bound. We refer to this property of the relation as its accuracy status. Accuracy status is described
by the enumerated type Rel Accuracy Status. To inquire about the accuracy status of the relation you can
use the get accuracy status() member functions of the Relation class.

Inexact relations will be produced when the result of a relational operation is outside the class of relations
we can represent. Recall that the Omega Library cannot handle relations that contain the application of
a function to something other than the input, output, or set tuple. So if it is asked for the range of
{[i] → [i′] | 1 ≤ i < i′ ≤ 10 ∧ F (i) > 0} , it produces an approximate answer.

You also can create the inexact relations explicitly by one of the following ways:
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• adding an unknown constraint to the formula (see section 4.4)

• unioning or intersecting with unknown relation (see section 6.3). Namely, given that r is an exact
relation and U is an unknown relation, r is a lower bound on r union U and is an upper bound on r

intersection U .

You can use the functions Upper Bound and Lower Bound to produce exact relations from from the
relation; they are described in section 6.2.
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Chapter 6

Creating New Relations From Old

This section contains descriptions of the high-level operations on relations. Most of these operations take
sets and/or relations as arguments and produce sets and or relations as results. In the following examples,
x, x1, x2, y, y1, y2 and z are arbitrary tuples and f1 and f2 are arbitrary presburger formulas.

6.1 Important warning

The most important thing to remember when using these operations is that they destroy their arguments.
If a relation Y is passed as an argument to a relational operation such as X = Union(Y, Z) then the value of
Y (and Z) are set to Null relations after the operation. These is because it if often efficient to “steal” data
structures associated with the arguments in building the result. If a relation to be passed as an argument to a
relational operation needs to be used after that operation, the relation should be copied explicitly: either by
creating another relation to pass in, or by using the Relation::copy(Relation &) function in the function
call (as in X = Intersection(X, copy(Y)).)

Figure 6.1 shows the use of some of the relation operations with the sets and relation created in earlier
figures.

6.2 Upper and Lower bounds

The following functions are used to produce upper and lower bounds on inexact relations. When applied to
an exact relation, the return value is the original relation.

Relation Upper Bound(Relation &r)

Works for both sets and relations. Returns s such that r ⊆ s and s is exact. Works by interpreting all
UNKNOWN constraints as true.

Relation Lower Bound(Relation &r)

Works for both sets and relations. Returns s such that s ⊆ r and s is exact. Works by interpreting all
UNKNOWN constraints as false.

6.3 Binary relational operations

Relation Union(Relation &r1, Relation &r2)

Works for both relations and sets. The arguments must have the same arity. If r1 = { x1 →
y1 | f1(x1, y1) } and r2 = { x2 → y2 | f2(x2, y2) } then the result is { x → y | f1(x, y) ∨ f2(x, y) }.

Relation Intersection(Relation &r1, Relation &r2)

Works for both relations and sets. The arguments must have the same arity. If r1 = { x1 →
y1 | f1(x1, y1) } and r2 = { x2 → y2 | f2(x2, y2) } then the result is { x → y | f1(x, y) ∧ f2(x, y) }.
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Relation S1_or_S2 = Union(copy(S1), copy(S2));

// NOTE! THE FOLLOWING KILLS S1 AND S2

Relation S1_and_S2 = Intersection(S1, S2);

S1_or_S2.is_upper_bound_satisfiable();

S1_and_S2.is_upper_bound_satisfiable();

S1_or_S2.print();

printf("\n");

S1_and_S2.print();

printf("\n");

Relation R_R = Composition(copy(R), R);

R_R.query_difference(i2, i, lb, ub, coupled);

assert(lb == 2);

assert(ub == posInfinity);

}

Figure 6.1: Example, Part 5: Working with Relations

Relation Composition(Relation &r1, Relation &r2)

Works for relations only. The output arity of r2 must be same as the input arity of r1. If r1 = { x1 →
y1 | f1(x1, y1) } and r2 = { x2 → y2 | f2(x2, y2) } then the result is { x → y | ∃z s.t. f1(z, y)∧f2(x, z) }.

Relation Join(Relation &r1, Relation &r2)

Equivalent to Composition(r2, r1).

Relation Restrict Domain(Relation &r1, Relation &r2)

First argument must be a relation and second argument must be a set. The input arity of r1 must be
the same as the arity of r2. If r1 = { x1 → y1 | f1(x1, y1) } and r2 = { x2 | f2(x2) } then the result is
{ x → y | f1(x, y) ∧ f2(x) }.

Relation Restrict Range(Relation &r1, Relation &r2)

First argument must be a relation and second argument must be a set. The output arity of r1 must
be the same as the arity of r2. If r1 = { x1 → y1 | f1(x1, y1) } and r2 = { x2 | f2(x2) } then the result
is { x → y | f1(x, y) ∧ f2(y) }.

Relation Difference(Relation &r1, Relation &r2)

Works for both relations and sets. The arguments must have the same arity. If r1 = { x1 →
y1 | f1(x1, y1) } and r2 = { x2 → y2 | f2(x2, y2) } then the result is { x → y | f1(x, y) ∧ ¬f2(x, y) }.

Relation Cross Product(Relation &r1, Relation &r2)

Works for sets only. If r1 = { x1 | f1(x1) } and r2 = { x2 | f2(x2) } then the result is { x →
y | f1(x) ∧ f2(y) }.

Relation Gist(Relation &r1, Relation &r2, int effort=0)

Works for both relations and sets. The arguments must have the same arity. If r1 = { x1 →
y1 | f1(x1, y1) } and r2 = { x2 → y2 | f2(x2, y2) } then the result is { x → y | f(x, y) } where f
is a presburger formula such that ∀x, y f(x, y)∧ f2(x, y) ⇔ f1(x, y) Note: there are many f ’s that sat-
isfy this property, so the results of this operation are not completely specified. We did this deliberately
as our method for computing f may change in future releases. The effort parameter specifies how hard
we try to make f tight, 0 represents least effort and 2 represents most effort.
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6.4 Unary relational operations

Relation Transitive Closure(Relation &r, Relation & IterationSpace=Relation::Null())

Works for relations only. The input and output arity of r and arity of IterationSpace should be the
same. If r is a dependence relation, IterationSpace is a set describing iteration space of r. Parameter
IterationSpace can be omitted. In this case the techniques requiring information about it are not
employed.
Computing transitive closure exactly for all relations is undecidable, since {[x, y] → [x + 1, y + n]}+ =
{[x, y] → [x+z, y+z∗n] : 1 ≤ z} encodes multiplication; Presburger plus multiplication is undecidable.
In cases where we cannot compute the exact transitive closure, we compute a lower bound. Details
can be found elsewhere [KPRS95].

Relation Domain(Relation &r)

Works for relations only. If r = { x → y | f(x, y) } then the result is { x | ∃y s.t. f(x, y) }

Relation Range(Relation &r)

Works for relations only. If r = { x → y | f(x, y) } then the result is { y | ∃x s.t. f(x, y) }

Relation Inverse(Relation &r)

Works for relations only. If r = { x → y | f(x, y) } then the result is { y → x | f(x, y) }

Relation Complement(Relation &r)

Works for both relations and sets. If r = { x → y | f(x, y) } then the result is { x → y | ¬f(x, y) }

Relation Project(Relation &r, Global Var ID v)

Works with both relations and sets. If r = { x1 → y1 | f ′(x1, y1) } then the result is
{ x1 → y1 | ∃z s.t. f(x1, y1) }, where f is the same as f′ except that all occurrences of variable v are
replaced by variable z.

Relation Project(Relation &r, int pos, Var Type vtype)

Works with both relations and sets. If r = { [a1, .., am] → [b1, .., bn] | f1(a1, .., am, b1, .., bn) } then the
result is
{ [a1, .., am] → [b1, .., bn] | ∃z s.t. f1(a

′

1, .., a
′

m, b′1, .., b
′

n) }, where ∀i a′

i = ai∧b′i = bi except that a′

pos = z

if vtype is Input Var and b′pos = z if vtype = Output Var.

Relation Project Sym(Relation &r)

Works with both relations and sets. If r = { x1 → y1 | f ′(x1, y1) } then the result is { x1 →
y1 | ∃a1, .., an s.t. f(x1, y1) }, where f is the same as f′ except that all occurrences of each global
variable gj are replaced by variable aj .

Relation Project On Sym(Relation &r)

Works with both relations and sets. If r = { x → y | f(x, y) } then the result is { [ ] | ∃x, y s.t. f(x
, y) }.

Relation Extend Domain(Relation &r)

Works with relations only. If r = [a1, .., am] → [b1, .., bn] | f(a1, .., am, b1, .., bn) } then the result is
{ [a1, .., am, am+1] → [b1, .., bn] | f(a1, .., am, b1, .., bn) },

Relation Extend Domain(Relation &r, int n)

Equivalent of applying the simple Extend Domain function n times.

Relation Extend Range(Relation &r)

Works with relations only. If r = { [a1, .., am] → [b1, .., bn] | f(a1, .., am, b1, .., bn) } then the result is
{ [a1, .., am] → [b1, .., bn, bn+1] | f(a1, .., am, b1, .., bn) },

Relation Extend Range(Relation &r, int n)

Equivalent of applying the simple Extend Range function n times.
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Relation Extend Set(Relation &r)

Works with sets only. If r = { [a1, .., am] | f(a1, .., am) } then the result is { [a1, .., am, am+1] | f(a1, ..,

am) },

Relation Extend Set(Relation &r, int n)

Equivalent of applying the simple Extend Set function n times.

Relation Deltas(Relation &r)

Works for relations only. The input arity must be the same as the output arity. If r = { x1 →
y1 | f(x1, y1) } then the result is { z | ∃x, y s.t. f(x, y) ∧ z = y − x }

Relation Deltas(Relation &r, int p)

Works with relations only. If r = { [a1, .., am] → [b1, .., bn] | f1(a1, .., am, b1, .., bn) } then it must be the
case that p ≤ m∧p ≤ n and the result is { [c1, .., cp] | f1(a1, .., am, b1, .., bn) ∧∀j 1 ≤ j ≤ p, cj = bj−aj}

Relation Approximate(Relation &r)

Works for both relations and sets. If r = { x1 → y1 | f ′(x1, y1) } then the result is { x → y | f(x, y)},
where f is the same as f′ except that all quantified variables are henceforth designated as being able
to have non-integer rational values. The effect of this designation is that all of these variables will be
able to eliminated exactly (via Fourier variable elimination) when the formula is simplified.

Relation Approximate(Relation &r, int strides allowed)

Works for both relations and sets. If strides allowed is False then the result is the same as the simple
Approximate function. If strides allowed is True then the result is the same as the simple Approximate
function except that if a quantified variable is only involved in one constraint then it is not designated
as being able to have non-integer rational values. The effect of this function is that the only variables
that can’t be eliminated exactly, are those that correspond to simple stride constraints.

Relation EQs to GEQs(Relation &r, bool excludeStrides=false)

Works for both relations and sets. If r = { x1 → y1 | f(x1, y1) } then the result is { x → y | f ′(x, y)},
where f′ is the same as f except that all equality constraints are converted into a matching pair of
inequalities. If excludeStrides is True then this convertion process is not applied to those equality
constraints that correspond to stride constraints (i.e. those constraints involving a single quantified
variable).

Relation Sample Solution(Relation &r)

For a relation R, returns a relation S ⊆ R where each variable in S has exactly one value. If R is
inexact, the result may be inexact.

Relation Symbolic Solution(Relation &r)

For a relation R, returns a relation S ⊆ R where each input, output, or set variable in S has exactly
one value, plus constraints on the symbolic variables.

6.5 Advanced operations (Hulls, Farkas lemma, ...)

The following operations are a little more sophisticated than Presburger arithemitic. A good place to find
more information about the mathematical basis of these operations is Schrijver’s Theory of Linear and

Integer Programming [Sch86]. First, some nice, mathematical definitions. Note that in each of the following,
there is set value for t or fixed set of xi’s. Rather, if you can find a value of t and set of xi’s that would
make a point be part of the result, then it is part of the result.

Linear Hull of X = {
∑t

i1
lambdaixi | xi ∈ X}

Affine Hull of X = {
∑t

i1
lambdaixi | xi ∈ X ∧ 1 =

∑t

i=1
lambdai}

Conic Hull of X = {
∑t

i1
lambdaixi | xi ∈ X ∧ ∀t

i=1λi ≥ 0}
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Convex Hull of X = {
∑t

i1
lambdaixi | xi ∈ X ∧ ∀t

i=1λi ≥ 0 ∧ 1 =
∑t

i=1
lambdai}

More intuitive definitions:

Convex Hull of X is the tightest set of inequality constraints who’s intersection contains all of X

Affine Hull of X is the tightest set of equality constraints who’s intersection contains all of X (i.e., all of the
equality constraints from the convex hull)

Conic Hull of X is the tightest set of inequality constraints with a zero constrant term who’s intersection
that contains all of X. The means that the conic hull is a cone, starting at the origin, that includes all
of X.

Linear Hull of X is the tightest set of equality constraints with a zero constrant term who’s intersection
contains all of X. The linear hull is a hyperplane passing through the origin and including all of X.

These operations all work by applying appropriate versions of Farkas’s lemma twice. Warning: These
operations can all be computationally expensive, and might result in either generating a very large number
of constraints, or very large coefficients (either of which will currently raise an exception). We are beinging
to experiment with trying to use these operations in a way that won’t blow out of control, but our work on
this is only just beginning. Of the operations above, convex hull is the most difficult and linear hull is the
easiest to compute.

We provide several other operations which don’t have as clean a mathematical definition but are compu-
tationally more tractiable. Many of these also allow a context to be provided: a content is a known, convex,
upper bound on the region.

Decoupled Convex Hull - This version of the convex hull operation only generates a constraint involving
both variables x and y if their is a one constraint involving both x and y in the argument. The solution
is always contains the exact convex hull and other than as required by these restrictions, is as tight as
possible.

For example, the convex hull of {[1 : 10, 1 : 10]} ∪ {[11 : 20, 11 : 20]} is {[x, y] : 1 ≤ x, y ≤ 20 ∧ −9 ≤
x − y ≤ 9}. But the decoupled convex hull would simply be {[1 : 20, 1 : 20]}.

FastTightHull - This function tries to use the convex hull computation above. However, if that computation
appears that it might be too complex, it uses a more approximate calculation, such as Decoupled Convex
Hull or Linear Hull. It is possible that it won’t correctly estimate the difficulty of a computation, and
either approximate something that is, in fact easy, or tackle something that is too difficult to compute
(generating a fatal error).

QuickHull - This function takes a tuple of relations, each of which is a single conjunct relation. A constraint
is in the result of QuickHull only if it appears in one of the relations and is directly implied by a single
constraint in each of the other relations (which must be a parallel constraint).

Hull - Combines Quick Hull, methods that check to see if any constraint appearing in one conjunct in fact
bounds all the conjuncts, and FastTightHull. This function is intended to give the best, overall balance
of accuracy and efficiency.

6.6 Low level relational operations

This section describes two low level relational operations that are used to implement many of the above
operations. The use of these low level functions is discouraged in cases where some combination of the
higher level operations can be used instead.

These operations take as arguments mappings which specify for each input and output variable in the
input relation(s), the input, output or existentially quantified variable in the resultant relation that they
correspond to. For example map(Input V ar, 1) = (Output V ar, 3) specifies all occurrences of the 1st input
variable will be replaced by the 3rd output variable in the resultant relation.
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void MapRel1(Relation &r, Mapping &map, Combine Type ctype, int n inp, int n out)

Works with both relations and sets (see discussion below for sets).

Relation MapAndCombineRel2(Relation &r1, Relation &r2, Mapping &map1, Mapping &map2,

Combine Type Op, int n inp, int n out)

Works with both relations and sets (see discussion below for sets).

MapRel1 and MapAndCombineRel2 can also take as arguments and produce as results sets. To do so,
the specified mappings must refer to Set Vars rather than Input Vars and Output Vars. It is important not
to mix Set Vars with Input Vars or Output Vars in the same object.

Mappings are declared using a constructor that takes two integer arguments that represent the in-
put and output arities of the input relation. Mappings are specified using the member function void

set map(Var Type in type, int i, Var Type out type, int j). For example the example above would
be specified by map.set map(Input Var,1,Output Var,3).

6.7 Relational functions that return boolean values

bool Must Be Subset(Relation &r1, Relation &r2)

Works for both relations and sets. The arguments must have the same arity. Let s1 = Upper Bound(r1)
and s2 = Lower Bound(r2). If s1 = { x1 → y1 | f1(x1, y1) } and s2 = { x2 → y2 | f2(x2, y2) } then the
result is ∀x, y f1(x, y) ⇒ f2(x, y).

bool Might Be Subset(Relation &r1, Relation &r2)

Works for both relations and sets. The arguments must have the same arity. Let s1 = Lower Bound(r1)
and s2 = Upper Bound(r2). If s1 = { x1 → y1 | f1(x1, y1) } and s2 = { x2 → y2 | f2(x2, y2) } then
the result is ∀x, y f1(x, y) ⇒ f2(x, y).

bool Is Obvious Subset(Relation &r1, Relation &r2)

Works for both relations and sets. The arguments must have the same arity. If r1 = { x1 →
y1 | f1(x1, y1) } and r2 = { x2 → y2 | f2(x2, y2) } then the result is B, where B → (∀x, y f1(x, y) ⇒
f2(x, y)). This function will often return true in cases where r1 is a subset of r2, but it is not guaranteed
to. The situations in which Is Obvious Subset agrees with exact subset are not specified, as they may
change in future releases.

6.8 Generating code from relations

The library provides code generation functions that can produce loop nests for a set of statements, each
with its own iteration space. The algorithm allows the union of these iteration spaces to be non-convex,
and performs optimizations to reduce the level of overhead caused by iterating over a non-convex region.
Since the overhead-reduction process increases code size, the user may specify how much overhead is to be
removed. The algorithm is described elsewhere [KPR95].

To use the following functions, include the file code gen/code gen.h in your program.
These two functions return a string containing C pseudo-code:

• String MMGenerateCode(Tuple<Relation> & transformations, Tuple<Relation> &original IS,

Relation known, int effort=0);

• String MMGenerateCode(Tuple<Relation> & transformations, Tuple<Relation> & original IS,

Tuple<naming info *> & name func tuple, Relation known, int effort=0);

The interface to the function uses several Tuples, with the first position in each tuple for the first
statement, the second position in each for the second statement, and so on. For each statement, you must
provide:
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• A set, the original iteration space for each statement

• A relation, a transformation for each statement to the new iteration space

• Optionally, a an object derived from class naming info to provide a name for each statement

The transformation is an affine, 1-1 mapping from points in the statement’s original iteration space
to the new iteration space. The output arity of the transformation relations is the dimensionality of the
resulting iteration space, and all transformations must have the same output arity. The input arity of each
transformation must be the same as the number of set variables in the corresponding iteration space. If no
transformation is desired, specify the identity relation for the transformation.

If symbolic constants are used in the iteration spaces, you can provide any information you have about
their values in the set known. It must have the same number of set variables as the dimensions of the resulting
iteration space. This information can allow us to generate simpler code.

The algorithm can use different levels of effort to remove control overhead, at the cost of code duplication.
The effort parameter is an integer that specifies that all avoidable control overhead should be removed
from effort + 1 inner loops. By default, overhead is removed from the innermost loop (effort of 0). For
a five dimensional iteration space, an effort level of 1 says that there should be no overheads nested inside
four loops; an effort level of 2 means no overheads at nesting level 3 or greater; and so on. An effort of -1
means omit all overhead removal.

To specify names for the statements, you should create a class derived from class naming info, and
pass into the code generation routines a Tuple of pointers to that class. The class needs to provide the
following functions:

naming info()

A default constructor.

virtual naming info& operator=(const naming info &n2)

The assignment operator.

virtual String name(Relation *current map)

The function to provide a String representation of a statement, given the current arguments. See
below for a full description.

virtual String debug name()

A String to represent the statement in debugging output.

virtual char * debug char name()

A char* to represent the statement in debugging output. (This is necessary because of the lifetime
of temporaries in C++; in a statement like printf("%s",(char *) n->name()), the cast to char* is
considered a use of the temporary String, which is then deleted.)

virtual String declaration()

Returns a String representation of the C declarations for the statement, if any are required. This is
currently unused.

The Relation *current map argument to the naming info::name function is a mapping from the index
variables of the generated loops to the corresponding original index variables. The new index variables have
a different iteration space than any of the original statements, called the “transformed iteration space”; thus
the current map relation maps an iteration in the transformed iteration space to an iteration in the state-
ment’s original iteration space. Calling the function Relation::print outputs with subs to string() on
current map will return a comma-delimited list of expressions for calculating the original iteration.
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6.9 Reachability

Consider a graph where each directed edge is specified as a tuple relation. Given a tuple set for each node
representing starting states at each node, the library can compute which nodes of the graph are reachable
from those start states, and the values the tuples can take on.

The function Reachable Nodes performs this function; to use it, include omega/reach.h. It takes a
single argument of type reachable info, defined as follows:

class reachable_information {

public:

Tuple<String> node_names;

Tuple<int> node_arity;

Dynamic_Array1<Relation> start_nodes;

Dynamic_Array2<Relation> transitions;

};

For a graph of n nodes, the tuples must have n elements, and the Dynamic Arrays must have n + 1
elements; the zeroth element in the Dynamic Arrays is unused.

The current implementation is very straightforward and can be very slow. It computes the transitive
closure of the transitions, then applies the resulting relations to the start states.

6.10 Avoiding copy overhead

When the relations have large formulas, copying and assigning relations can be costly. In some instances,
such as when you return a relation from a function, or when you copy a locally-declared relation into a list
or array, the relation being copied may be thrown away after the operation.

The library has a mechanism to make these copies more efficient. It does reference counting of relations
in some limited cases, so that no copy is actually made; each relation shares the same “body”. In order
to get this behavior, call the function Relation::finalize() on your relation. This essentially marks the
relation as “read-only” as far as the library is concerned. That means that there are no constraints being
built, and no more formula nodes can be added anywhere in its formula tree. You’ll still be able to perform
high-level operations on it, and you’ll still be able to query it and simplify it – the library detects this and
does an actual copy if any operation will change the relation.

6.11 Compressing relations

In past releases, Relations could be compressed to take up less memory. Because of improvements in the
library’s handling of memory, we no longer use this feature. The interface still exists to avoid breaking
existing code, but the functions don’t do anything.

If you find that the memory improvements are not sufficient for you, you can try re-enabling the com-
pression features with the compiler option -DINCLUDE COMPRESSION. Since we don’t use this anymore, it is
possible that code in the current release is not compatible with this option.

6.12 Reclaiming memory used by Relations

You may also want to reclaim the memory that a relation uses – for example, if you have an array of relations,
and no longer need them. You can assign the result of Relation::Null() to each relation whose memory
you want to reclaim.
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Chapter 7

The Uniform Library

This chapter documents version 1.1.0 of the Uniform library, located in the omega/uniform directory. To
use it in your programs, include the file uniform/uniform.h, and link against libuniform.a.

7.0.1 Introduction

The Uniform Library is a source to source parallelizing transformation system. It is a complete implemen-
tation of the transformation system described in Wayne Kelly’s Ph.D. dissertation: ”Optimization within a
Unified Transformation Framework”. It is designed to replace existing ad hoc transformation techniques by
a sound underlying foundation on which future work can be built.

One of the key goals of this system is to produce the same transformed code for a given program,
regardless of the form in which that program is presented. That is, the system should produce the same
code even if some of the original loops had been interchanged or distributed. This is achieved by considering
only the inherent computation and data dependences and ignoring everything else about the form in which
that computation happened to be presented by the programmer.

It uses an abstraction called space mappings to describe how computation should be distributed across
processors and an abstraction called time mappings to describe how the computations should be ordered on
each processor. This provides a uniform way in which to represent all such transformations - hence the name
of the library.

It contains components to select the best set of space mappings, to select the best set of time mappings
given a set of space mappings and to generate parallel code that corresponds to these choices.

Much of the power of the system comes from the use of Tuple relations and sets provided by the Omega
Library to represent and manipulate space mappings, time mappings, iteration spaces and data dependences.

7.0.2 Usage

Input:

• The system takes as input a program written in a language based on a sequential execution model.

• The system is designed to be somewhat language independent - rather than parsing a program in any
given language, it asks questions about the statements in the program by way of a set of functions
defined in a file called ”uniform-interf.h”. The system can therefore be ported to new compilers simply
by providing a new implementation for those functions. An implementation has been provided for use
with Petit, and is contained in the file ”uniform-interf.c” in the petit src directory.

• There are currently many restrictions on the set of programs which can be transformed. It is hoped
that many of these will be relaxed in the future:

1. Programs must have static control flow. This means that at compile time it must be possible
to give a simple closed form description of the set of computations that will be performed at
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runtime (i.e., the set of iterations that will be executed at run time must be able to be described
exactly using the Omega library’s Tuple relations). This generally implies that the only looping
structures are FOR loops, and that all loop bounds and conditionals are affine functions of outer
level loop variables and symbolic constants.

2. Only single procedures can be transformed and any procedure calls are assumed to have no side
effects.

Output:

• The system produces as output a parallel SPMD C program with calls to functions from the p4
portable runtime library for share memory systems (as modified by Monica Lam’s SUIF group at
Stanford University). Versions of this runtime library are available for the Stanford DASH machine,
the SGI Power Challenge and the KSR.

• The transformed program is currently written to a file called ”aux.out”.

Invoking The System:

• To use the library directly, a program simply needs to call the function ”uniform(...)”. The single
argument to this function is a string containing the options to be passed on the transformation system
(see OPTIONS below).

• To use the transformation system from within Petit, simply use the ”-W” option on the command line,
followed immediately by any options that you want to have passed on to the transformation system.

For example: ”petit -x -Wr10c -r foo.t” will turn on array expansion and reduction operation recognition
in Petit and pass the string ”r10c” to the uniform transformation system. That in turn will specify that
the computation to communication ratio for the target machine is 10:1 and that potentially expensive
transitive closure calculations should be performed.

Options:

• -c Potentially expensive transitive closure calculations will be performed. This will improve the quality
of the solution in some cases.

• -d Only select space mappings that can be specified as data distributions.

• -m Allow some time and space mappings to be specified manually.

• -s Use the naive search algorithm (useful in combination with trace option).

• -t Output trace information to the file ”uniform.trace”.

• -px Use x as the number of physical processors when estimating costs.

• The default value is 10.

• -nx Use x as the number of iterations per loop when estimating costs. The default value is 100.

• -rx Use x as the computation to communication ration of the target machine when estimating costs.
The default value is 5.
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