>>> # >>> # Some examples from the documentation for the Omega Calculator >>> # This is the input for figures 2 and 3. >>> # >>> >>> R := { [i] -> [i'] : 1 <= i,i' <= 10 && i' = i+1 }; >>> R; {[i] -> [i+1] : 1 <= i <= 9} >>> inverse R; {[i] -> [i-1] : 2 <= i <= 10} >>> domain R; {[i]: 1 <= i <= 9} >>> range R; {[i]: 2 <= i <= 10} >>> R compose R; {[i] -> [i+2] : 1 <= i <= 8} >>> R+; {[i] -> [i'] : 1 <= i < i' <= 10} >>> # closure of R = R union (R compose R) union (R compose R ... >>> complement R; {[i] -> [i'] : i <= 0} union {[i] -> [i'] : 10 <= i} union {[i] -> [i'] : 1, i' <= i <= 9} union {[i] -> [i'] : 1 <= i <= 9, i'-2} >>> S := {[i] : 5 <= i <= 25}; >>> S; {[i]: 5 <= i <= 25} >>> R(S); {[i]: 6 <= i <= 10} >>> # apply R to S >>> R \ S; {[i] -> [i+1] : 5 <= i <= 9} >>> # restrict domain of R to S >>> R / S; {[i] -> [i+1] : 4 <= i <= 9} >>> # restrict range of R to S >>> (R\S) union (R/S); {[i] -> [i+1] : 4 <= i <= 9} >>> (R\S) intersection (R/S); {[i] -> [i+1] : 5 <= i <= 9} >>> (R/S) - (R\S); {[4] -> [5] } >>> S*S; {[i] -> [i'] : 5 <= i <= 25 && 5 <= i' <= 25} >>> # cross product >>> D := S - {[9:16:2]} - {[17:19]}; >>> D; {[i]: 5 <= i <= 8} union {[i]: exists ( alpha : 2alpha = i && 10 <= i <= 16)} union {[i]: 20 <= i <= 25} >>> T := { [i] : 1 <= i <= 11 & exists (a : i = 2a) }; >>> T; {[i]: exists ( alpha : 2alpha = i && 2 <= i <= 10)} >>> Hull T; {[i]: exists ( alpha : 2alpha = i && 2 <= i <= 10)} >>> Hull D; {[i]: 5 <= i <= 25} >>> codegen D; for(t1 = 5; t1 <= 8; t1++) { s0(t1); } for(t1 = 10; t1 <= 16; t1 += 2) { s0(t1); } for(t1 = 20; t1 <= 25; t1++) { s0(t1); } >>> codegen {[i,j] : 1 <= i+j,j <= 10}; for(t1 = -9; t1 <= 9; t1++) { for(t2 = max(1,-t1+1); t2 <= min(-t1+10,10); t2++) { s0(t1,t2); } } >>>