# Omega Calculator v1.2 (based on Omega Library 1.2, August, 2000): # symbolic p(2), n, m1, m2, low; # # # R := { [ir,jr] : 1 <= ir <= n && 1 <= jr <= m1 }; # # # f1i := { [iw,jw] -> [ir,jr] : 1 <= ir <= n && 1 <= jr <= m1 && # 1 <= iw <= n && 1 <= jw <= m2 && # jw = jr && # iw = ir }; # # f1f := { [iw,jw] -> [ir,jr] : 1 <= ir <= n && 1 <= jr <= m1 && # 1 <= iw <= n && 1 <= jw <= m2 && # jw = jr && # iw < ir }; # # # f3i := { [iw,jw] -> [ir,jr] : 1 <= ir <= n && 1 <= jr <= m1 && # 1 <= iw <= n && 1 < low <= jw <= m1 && # jw-1 = jr && # iw = ir }; # # f3f := { [iw,jw] -> [ir,jr] : 1 <= ir <= n && 1 <= jr <= m1 && # 1 <= iw <= n && 1 < low <= jw <= m1 && # jw-1 = jr && # iw < ir }; # # # o31i := { [iw3,jw3] -> [iw1,jw1] : 1 <= iw1 <= n && 1 <= jw1 <= m2 && # 1 <= iw3 <= n && 1 < low <= jw3 <= m1 && # jw1 = jw3-1 && # iw1 = iw3 }; # # # o13f := { [iw1,jw1] -> [iw3,jw3] : 1 <= iw1 <= n && 1 <= jw1 <= m2 && # 1 <= iw3 <= n && 1 < low <= jw3 <= m1 && # jw1 = jw3-1 && # iw1 < iw3 }; # # # o31f := { [iw3,jw3] -> [iw1,jw1] : 1 <= iw1 <= n && 1 <= jw1 <= m2 && # 1 <= iw3 <= n && 1 < low <= jw3 <= m1 && # jw1 = jw3-1 && # iw3 < iw1 }; # # # o11f := { [iw1a,jw1a] -> [iw1b,jw1b] : 1 <=iw1a<= n && 1 <=jw1a<= m2 && # 1 <=iw1b<= n && 1 <=jw1b<= m2 && # jw1a = jw1b && # iw1a < iw1b }; # # o33f := { [iw3a,jw3a] -> [iw3b,jw3b] : 1 <=iw3a<= n && 1 < low <=jw3a<= m1 && # 1 <=iw3b<= n && 1 < low <=jw3b<= m1 && # jw3a-1 = jw3b-1 && # iw3a < iw3b }; # # # # # FIRST GROUP - 1i and 2i (NO POSSIBLE OUTPUT DEPS. BETWEEN) # v1i := f1i; # # v1i; {[iw,jw] -> [iw,jw] : 1 <= jw <= m1, m2 && 1 <= iw <= n} # # # Exposed12i := R intersection complement domain f1i; # # Exposed12i; {[In_1,In_2]: 1, m2+1 <= In_2 <= m1 && 1 <= In_1 <= n} # # # # SECOND GROUP - 3i # v3i := f3i / Exposed12i; # # / is restrictRange # v3i; {[iw,jw] -> [iw,jw-1] : 2 <= low <= jw <= m1 && 1 <= iw <= n && m2 <= jw-2} # # # Exposed3i := R intersection complement domain f3i; # # Exposed3i; {[In_1,In_2]: 1 <= In_1 <= n && 1 <= In_2 <= m1 && low <= 1} union {[In_1,In_2]: 1 <= In_2 <= m1, low-1 && 1 <= In_1 <= n} # # # # THIRD GROUP - 1,2,3f (THERE ARE POSSIBLE OUTPUT DEPS BETWEEN THEM) # # v1f := ( f1f / Exposed3i ) # intersection complement ( f3i compose o13f ) # intersection complement ( f3f compose o13f ) # intersection complement ( f1i compose o11f ) # intersection complement ( f1f compose o11f ); # # v1f; {[iw1a,jw1a] -> [ir,jr] : FALSE } # # # # WE SHOULD BE ABLE TO DO v1f WITH SOME VALUE-BASED FLOW DD'S # # v1f_val := ( f1f / Exposed3i ) # intersection complement ( v3i compose o13f ) # intersection complement ( f3f compose o13f ) # intersection complement ( v1i compose o11f ) # intersection complement ( f1f compose o11f ); # # v1f_val; {[iw1a,jw1a] -> [ir,jr] : FALSE } # # # # # # The effects of loop-independent flow have been taken out already, # # so this should work. But it does not. Probably I am stupyd. # # # # v1f_clever := ( f1f / Exposed3i ) # intersection complement ( f3f compose o13f ) # intersection complement ( f1f compose o11f ); # # v1f_clever; {[iw1a,jw1a] -> [iw1a+1,jw1a] : 1 <= jw1a <= m2, m1 && 1 <= iw1a < n && low <= 1} union {[iw1a,jw1a] -> [iw1a+1,jw1a] : 1 <= jw1a <= m2, m1, low-1 && 1 <= iw1a < n} # # # # # # NOW CHECK FOR EQUIVALENCES - THESE SHOULD BE TRUE # # # # v1f subset v1f_val; True # # v1f_val subset v1f; True # # # v1f subset v1f_clever; # # v1f_clever subset v1f;