# This is the file facts.prew, which is prepended to the .prew files # for the particular code generation we want, defines things like the # iteration space and dependences. Known facts are inserted by the # Makefile. # # If you're looking at a .w file instead of facts.prew, then you should # remember to edit the original .prew files, not the .w files. # # This facts.prew file describes the program # # for(i = 0; i <= N-1; i++) { # cur[i]=... # } # for(t = 0; t < T; t++) { # for(i = 0; i <= N-1; i++) { # old[i]=cur[i]; # } # for(i = 1; i <= N-2; i++) { # cur[i] = (old[i-1]+old[i]+old[i]+old[i+1])*0.25; # } # } # first, the spaces and memory maps symbolic T, N; IS_INIT := { [1,i,1,0,0] : 0<=i<=N-1 }; MM_INIT := { [1,i,1,0,0] -> [0,i] : 0<=i<=N-1 }; IS_COPY := { [2,t,0,i,1] : 0<=t [t+1,i] : 0<=t [t+1,i] : 0<=t [x',t',y',i',z'] : (x'>x) or (x'=x and t'>t) or (x'=x and t'=t and y'>y) or (x'=x and t'=t and y'=y and i'>i) or (x'=x and t'=t and y'=y and i'=i and z'>z) }; FWD7 := {[x,t,y,i,z,a,b] -> [x',t',y',i',z',a',b'] : (x'>x) or (x'=x and t'>t) or (x'=x and t'=t and y'>y) or (x'=x and t'=t and y'=y and i'>i) or (x'=x and t'=t and y'=y and i'=i and z'>z) or (x'=x and t'=t and y'=y and i'=i and z'=z and a'>a) or (x'=x and t'=t and y'=y and i'=i and z'=z and a'=a and b'>b) }; BWD5 := inverse FWD5; BWD7 := inverse FWD7; EQi := {[x,t,y,i,z] -> [x',t',y',i',z'] : i'=i }; # output deps OAA := (IS_COPY * IS_COPY) intersection FWD5 intersection EQi; OCC := (IS_CALC * IS_CALC) intersection FWD5 intersection EQi; # combined flow/anti deps FAC := (IS_COPY * IS_CALC) intersection FWD5 intersection {[2,t,0,i,1] -> [2,t',1,i',1] : (i'-1<=i<=i'+1)}; FCA := (IS_CALC * IS_COPY) intersection FWD5 intersection {[2,t,1,i,1] -> [2,t',0,i',1] : (i-1<=i'<=i+1)}; # total memory deps in the "core" COREMEMDEPS := OAA union OCC union FAC union FCA; # data flow for original code: DF_12p1 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,0,0,i,1] : 0 [2,t,0,0,1] }; DF_12p3 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,t,0,i,1] : i=N-1 && N>1 }; DF_32 := ( IS_CALC * IS_COPY ) intersection {[2,t,1,i,1] -> [2,t+1,0,i,1]}; DF_23a := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i+1,1] }; DF_23b := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i,1] }; DF_23c := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i-1,1] }; # data flow for array expanded code, # after forward substitution of "old[i] = cur[i]" DF1Ia := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; DF1Ib := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t>0 && i=0 } restrictDomain IS_INIT restrictRange IS_CALC; DF1C := { [2,t,1,i,1] -> [2,t+1,1,i+1,1] } restrictDomain IS_CALC restrictRange IS_CALC; DF2I := { [1,i,1,0,0] -> [2,t,1,i,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; DF2C := { [2,t,1,i,1] -> [2,t+1,1,i+0,1] } restrictDomain IS_CALC restrictRange IS_CALC; DF3Ia := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; DF3Ib := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t>0 && i=N-1 } restrictDomain IS_INIT restrictRange IS_CALC; DF3C := { [2,t,1,i,1] -> [2,t+1,1,i-1,1] } restrictDomain IS_CALC restrictRange IS_CALC; # total data flow COREDATAFLOW := DF1C union DF2C union DF3C; # arity expansion relations ex_0_5v := { [] -> [a,b,c,d,e] }; ex_0_7v := { [] -> [a,b,c,d,e,f,g] }; ex_3_5 := { [a,b,c] -> [a,b,c,0,0] }; ex_3_7 := { [a,b,c] -> [a,b,c,0,0,0,0] }; ex_5_7 := { [a,b,c,d,e] -> [a,b,c,d,e,0,0] }; ex_5_3 := { [a,b,c,0,0] -> [a,b,c] }; ex_7_3 := { [a,b,c,0,0,0,0] -> [a,b,c] }; ex_7_5 := { [a,b,c,d,e,0,0] -> [a,b,c,d,e] }; # stuff used in skew and tskew # Here is the description of time skewing from the current draft of the paper. IS_Trans := { [2,t,1,i,1] -> [2,tb,1,s,1,tt,1] : 0<=tt<1000 && s=i+1*t && t=1000*tb+tt }; IS_Tinv := inverse IS_Trans; # We use it to transform the iteration spaces TS_IS_CALC := IS_CALC join IS_Trans; # for some reason OC refuses do to this "join" but will do the reverse: # TS_IS_INIT := ex_7_5 join IS_INIT; TS_IS_INIT := IS_INIT join (inverse ex_7_5); # Now we can update the data flow relations to correspond to the new I.S.'s TS_DF1Ia := ex_7_5 join DF1Ia join IS_Trans; TS_DF1Ib := ex_7_5 join DF1Ib join IS_Trans; TS_DF1C := IS_Tinv join DF1C join IS_Trans; TS_DF2I := ex_7_5 join DF2I join IS_Trans; TS_DF2C := IS_Tinv join DF2C join IS_Trans; TS_DF3Ia := ex_7_5 join DF3Ia join IS_Trans; TS_DF3Ib := ex_7_5 join DF3Ib join IS_Trans; TS_DF3C := IS_Tinv join DF3C join IS_Trans; KNOWN := { [] : T >= 0 and N >= 4 }; # Lets try to build up the equivalent of the time skewing transformation, # IS_Trans := { [2,t,1,i,1] -> [2,tb,1,x,1,y,1] : # 1000*tb<=t-1<=1000*(tb+1)-1 && y=t-1000*tb && x=y+i }; # for both statements together, right from the diagram in the new TOPLAS stuff. # original code without mmap # # First, look at it as a wider space WIDEN := { [2, t, s, i , 1] -> [2, 2t+s, 0, i, 1] : 0<=s<=1 }; TSKEW := { [2, t, 0, i , 1] -> [2, tb, t+i, tt, 1] : 1000*tb+tt = t and 0 <= tt < 1000 }; TSKEW_2LOOPS := WIDEN join TSKEW; # print this for the paper # I think this should work but it blows up codegen: # codegen # IS_INIT, TSKEW_2LOOPS : IS_COPY, TSKEW_2LOOPS : IS_CALC # given (KNOWN join ex_0_5v); # So we fake it as follows, # relying on the fact that neither "t" nor "s" is used in any statement WIDEN0 := { [2, t, 0, i , 1] -> [2, 2t, 0, i, 1] }; WIDEN1 := { [2, t, 1, i , 1] -> [2, 2t+1, 0, i, 1] }; codegen IS_INIT, TSKEW : (IS_COPY join WIDEN0) , TSKEW : (IS_CALC join WIDEN1) given (KNOWN join ex_0_5v);