# This is the file facts.prew, which is prepended to the .prew files # for the particular code generation we want, defines things like the # iteration space and dependences. Known facts are inserted by the # Makefile. # # If you're looking at a .w file instead of facts.prew, then you should # remember to edit the original .prew files, not the .w files. # # This facts.prew file describes the program # # for(i = 0; i <= N-1; i++) { # cur[i]=... # } # for(t = 0; t < T; t++) { # for(i = 0; i <= N-1; i++) { # old[i]=cur[i]; # } # for(i = 1; i <= N-2; i++) { # cur[i] = (old[i-1]+old[i]+old[i]+old[i+1])*0.25; # } # } # first, the spaces and memory maps symbolic T, N; IS_INIT := { [1,i,1,0,0] : 0<=i<=N-1 }; MM_INIT := { [1,i,1,0,0] -> [0,i] : 0<=i<=N-1 }; IS_COPY := { [2,t,0,i,1] : 0<=t [t+1,i] : 0<=t [t+1,i] : 0<=t [x',t',y',i',z'] : (x'>x) or (x'=x and t'>t) or (x'=x and t'=t and y'>y) or (x'=x and t'=t and y'=y and i'>i) or (x'=x and t'=t and y'=y and i'=i and z'>z) }; FWD7 := {[x,t,y,i,z,a,b] -> [x',t',y',i',z',a',b'] : (x'>x) or (x'=x and t'>t) or (x'=x and t'=t and y'>y) or (x'=x and t'=t and y'=y and i'>i) or (x'=x and t'=t and y'=y and i'=i and z'>z) or (x'=x and t'=t and y'=y and i'=i and z'=z and a'>a) or (x'=x and t'=t and y'=y and i'=i and z'=z and a'=a and b'>b) }; BWD5 := inverse FWD5; BWD7 := inverse FWD7; EQi := {[x,t,y,i,z] -> [x',t',y',i',z'] : i'=i }; # output deps OAA := (IS_COPY * IS_COPY) intersection FWD5 intersection EQi; OCC := (IS_CALC * IS_CALC) intersection FWD5 intersection EQi; # combined flow/anti deps FAC := (IS_COPY * IS_CALC) intersection FWD5 intersection {[2,t,0,i,1] -> [2,t',1,i',1] : (i'-1<=i<=i'+1)}; FCA := (IS_CALC * IS_COPY) intersection FWD5 intersection {[2,t,1,i,1] -> [2,t',0,i',1] : (i-1<=i'<=i+1)}; # total memory deps in the "core" COREMEMDEPS := OAA union OCC union FAC union FCA; # data flow for original code: DF_12p1 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,0,0,i,1] : 0 [2,t,0,0,1] }; DF_12p3 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,t,0,i,1] : i=N-1 && N>1 }; DF_32 := ( IS_CALC * IS_COPY ) intersection {[2,t,1,i,1] -> [2,t+1,0,i,1]}; DF_23a := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i+1,1] }; DF_23b := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i,1] }; DF_23c := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i-1,1] }; # data flow for array expanded code, # after forward substitution of "old[i] = cur[i]" DF1Ia := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; DF1Ib := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t>0 && i=0 } restrictDomain IS_INIT restrictRange IS_CALC; DF1C := { [2,t,1,i,1] -> [2,t+1,1,i+1,1] } restrictDomain IS_CALC restrictRange IS_CALC; DF2I := { [1,i,1,0,0] -> [2,t,1,i,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; DF2C := { [2,t,1,i,1] -> [2,t+1,1,i+0,1] } restrictDomain IS_CALC restrictRange IS_CALC; DF3Ia := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; DF3Ib := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t>0 && i=N-1 } restrictDomain IS_INIT restrictRange IS_CALC; DF3C := { [2,t,1,i,1] -> [2,t+1,1,i-1,1] } restrictDomain IS_CALC restrictRange IS_CALC; # total data flow COREDATAFLOW := DF1C union DF2C union DF3C; # arity expansion relations ex_0_5v := { [] -> [a,b,c,d,e] }; ex_0_7v := { [] -> [a,b,c,d,e,f,g] }; ex_3_5 := { [a,b,c] -> [a,b,c,0,0] }; ex_3_7 := { [a,b,c] -> [a,b,c,0,0,0,0] }; ex_5_7 := { [a,b,c,d,e] -> [a,b,c,d,e,0,0] }; ex_5_3 := { [a,b,c,0,0] -> [a,b,c] }; ex_7_3 := { [a,b,c,0,0,0,0] -> [a,b,c] }; ex_7_5 := { [a,b,c,d,e,0,0] -> [a,b,c,d,e] }; # stuff used in skew and tskew # Here is the description of time skewing from the current draft of the paper. IS_Trans := { [2,t,1,i,1] -> [2,tb,1,s,1,tt,1] : 0<=tt<500 && s=i+1*t && t=500*tb+tt }; IS_Tinv := inverse IS_Trans; # We use it to transform the iteration spaces TS_IS_CALC := IS_CALC join IS_Trans; # for some reason OC refuses do to this "join" but will do the reverse: # TS_IS_INIT := ex_7_5 join IS_INIT; TS_IS_INIT := IS_INIT join (inverse ex_7_5); # Now we can update the data flow relations to correspond to the new I.S.'s TS_DF1Ia := ex_7_5 join DF1Ia join IS_Trans; TS_DF1Ib := ex_7_5 join DF1Ib join IS_Trans; TS_DF1C := IS_Tinv join DF1C join IS_Trans; TS_DF2I := ex_7_5 join DF2I join IS_Trans; TS_DF2C := IS_Tinv join DF2C join IS_Trans; TS_DF3Ia := ex_7_5 join DF3Ia join IS_Trans; TS_DF3Ib := ex_7_5 join DF3Ib join IS_Trans; TS_DF3C := IS_Tinv join DF3C join IS_Trans; KNOWN := { [] : T >= 0 and N >= 4 }; # # multiprocessor version # time skewed iteration space # blocked memory mapping # # # First of all, if 500 is much less than 4000, # there's a problem with the constraints below. # To keep send and recv. slices from "crashing", 4000>=2BS+2 (safe approx?) # assertUnsatisfiable( { [] : 4000 < 2 * 500 + 2 } ); # this transformation has no existentially quantified variables; # basically, it factors out the common stuff below, # but the quantified variables are left in the output, so we can get them # everything after the 000 is not needed in final xform # # DANGER WILL ROBINSON! # the .c file depends on the fact that t4 is always the processor number # MP_TSKEW_ALL := { [2, t, 1, i, 1] -> [2, tb, slice, proc, t+i, tt, 000, t, i, lproc, t0, i0, ie]: ## ## define time block and tt ## 500*tb+tt = t and 0 <= tt < 500 ## ## define "logical proc", then "wrap" onto physical later: ## "logical proc" (lproc) = (t-i) div sigma ## and 4000*lproc <= t-i < 4000*(lproc+1) ## ## for uniproc. test, just do proc = -lproc (for multi, proc = lproc % 8) ## and proc = -lproc ## ## t0,i0 = first iteration in a block; ## t0,ie = maximum "i" in t0 of this block) ## and t0=500*tb and t0-ie=4000*lproc and i0+4000-1=ie }; # # We need to send things "down" (to same time block of next proc.) # and "right" (to next time block of next proc.) # The "+2" is for the things to send right (not mentioned in IPDPS paper). # MP_TSKEW_SEND_SL := MP_TSKEW_ALL join { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> [2, tb, 1, proc, t_p_i, tt, 0] : ## define send slice... (t+i) <= (t0+(500-2) + i0+(500-1) + 2) }; MP_TSKEW_SEND_ME := MP_TSKEW_ALL join { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> [2, tb, 2, proc, t_p_i, tt, 0] : ## in the send slice (t+i) <= (t0+(500-2) + i0+(500-1) + 2) ## and near the (t-i) border: and (t-i) >= ((t0-i0)-1) }; MP_TSKEW_COMP_SL := MP_TSKEW_ALL join { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> [2, tb, 3, proc, t_p_i, tt, 0] : ## define computation slice... ## not send (t+i) > (t0+(500-2) + i0+(500-1) + 2) ## and not recv and (t+i) <= (t0+ie) }; # Receive the iterations that we sent, # but after the calculation, # and on the neighbor (lower) processor MP_TSKEW_R_FROM_ME := MP_TSKEW_SEND_ME join { [2, tb, 2, proc, t_p_i, tt, 0] -> [2, tb, 4, proc-1, t_p_i, tt, 0] }; MP_TSKEW_RECV_SL := MP_TSKEW_ALL join { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> [2, tb, 5, proc, t_p_i, tt, 0] : ## define recv slice... (t+i) > (t0+ie) }; ## stuff to gather each processor's final results... IS_GATHER := IS_CALC intersection { [2,t,1,i,1] : t=T-1 }; GATHER_EXPANDER := MP_TSKEW_ALL join { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> [3, tb, 7, proc, t_p_i, tt, 0] }; ## stuff to initialize things right in the first place ### NOTE THAT t4 (processor #) is used in a loop in initialization IS_INIT_EXP := { [1,t,i,0,0] : (-1=t && 0<=i<=N-1) || (0<=t