>>> # test ConvexRepresentation >>> >>> symbolic n; >>> >>> # >>> # result is convex, same behavior as PairwiseCheck >>> # >>> r1:={[i,j]: 0<=i,j<=100}; >>> r2:={[i,j]: i>=100 && j>=0 && i+j<=200}; >>> r3:={[i,j]: i>=0 && j>=100 && i+j<=200}; >>> PairwiseCheck (r1 union r2 union r3); {[i,j]: 0 <= i <= -j+200 && 0 <= j} >>> ConvexRepresentation (r1 union r2 union r3); {[i,j]: 0 <= i <= -j+200 && 0 <= j} >>> >>> r1:={[i]: 1<=i<=n && exists (alpha: i=2alpha)}; >>> r2:={[i]: 1<=i<=n && exists (alpha: i=2alpha+1)}; >>> PairwiseCheck (r1 union r2); {[i]: 1 <= i <= n} >>> ConvexRepresentation (r1 union r2); {[i]: 1 <= i <= n} >>> >>> # >>> # test neighboring regions merge >>> # >>> r1:={[i]: 1<=i<=9 && exists (alpha: i=2alpha+1)}; >>> r2:={[i]: 9<=i<=99 && exists (alpha: i=2alpha+1)}; >>> PairwiseCheck (r1 union r2); {[i]: Exists ( alpha : 2alpha = 1+i && 1 <= i <= 9)} union {[i]: Exists ( alpha : 2alpha = 1+i && 9 <= i <= 99)} >>> ConvexRepresentation (r1 union r2); {[i]: Exists ( alpha : 2alpha = 1+i && 1 <= i <= 99)} >>> >>> r1:={[i,j]:1<=i,j<=100}; >>> r2:={[i,j]:50<=i<=100 && 100<=j<=200}; >>> r3:={[i,j]:1<=i<=50 && 100<=j<=200}; >>> r4:={[i,j]: 1000<=i,j<=2000}; >>> PairwiseCheck (r1 union r2 union r3 union r4); {[i,j]: 1 <= i <= 100 && 1 <= j <= 100} union {[i,j]: 50 <= i <= 100 && 100 <= j <= 200} union {[i,j]: 1 <= i <= 50 && 100 <= j <= 200} union {[i,j]: 1000 <= i <= 2000 && 1000 <= j <= 2000} >>> ConvexRepresentation (r1 union r2 union r3 union r4); {[i,j]: 1 <= i <= 100 && 1 <= j <= 200} union {[i,j]: 1000 <= i <= 2000 && 1000 <= j <= 2000} >>> >>> # >>> # test stride condition merge, filling up holes >>> # >>> r1:={[i]:1<=i<=100 && exists (alpha: 1+7alpha<=i<=3+7alpha)}; >>> r2:={[i]:1<=i<=100 && exists (alpha: i=4+7alpha)}; >>> r3:={[i]:1<=i<=100 && exists (alpha: i=5+7alpha)}; >>> r4:={[i]:1<=i<=100 && exists (alpha: 6+7alpha<=i<=9+7alpha)}; >>> PairwiseCheck (r1 union r2 union r3); {[i]: Exists ( alpha : 1, 7alpha+1 <= i <= 100, 7alpha+3)} union {[i]: Exists ( alpha : 3+i = 7alpha && 4 <= i <= 95)} union {[i]: Exists ( alpha : 2+i = 7alpha && 5 <= i <= 96)} >>> ConvexRepresentation (r1 union r2 union r3); {[i]: Exists ( alpha : 1, 7alpha+1 <= i <= 100, 7alpha+5)} >>> >>> PairwiseCheck (r1 union r2 union r4); {[i]: Exists ( alpha : 1, 7alpha+1 <= i <= 100, 7alpha+3)} union {[i]: Exists ( alpha : 3+i = 7alpha && 4 <= i <= 95)} union {[i]: Exists ( alpha : 1, 7alpha+6 <= i <= 100, 7alpha+9)} >>> ConvexRepresentation (r1 union r2 union r4); {[i]: Exists ( alpha : 1, 7alpha+6 <= i <= 100, 7alpha+11)} >>> >>> r1:={[i]:6<=i<=96 && exists (alpha: i=6alpha)}; >>> r2:={[i]:3<=i<=93 && exists (alpha: i=3+6alpha)}; >>> PairwiseCheck (r1 union r2); {[i]: Exists ( alpha : i = 6alpha && 6 <= i <= 96)} union {[i]: Exists ( alpha : i = 3+6alpha && 3 <= i <= 93)} >>> ConvexRepresentation (r1 union r2); {[i]: Exists ( alpha : i = 3alpha && 3 <= i <= 96)} >>> >>> r1:={[i]:1<=i<=100 && exists (alpha: 1+15alpha<=i<=4+15alpha)}; >>> r2:={[i]:1<=i<=100 && exists (alpha: 6+15alpha<=i<=8+15alpha)}; >>> r3:={[i]:1<=i<=100 && exists (alpha: 11+15alpha<=i<=13+15alpha)}; >>> PairwiseCheck (r1 union r2 union r3); {[i]: Exists ( alpha : 1, 15alpha+1 <= i <= 100, 15alpha+4)} union {[i]: Exists ( alpha : 1, 15alpha+6 <= i <= 100, 15alpha+8)} union {[i]: Exists ( alpha : 1, 15alpha+11 <= i <= 100, 15alpha+13)} >>> ConvexRepresentation (r1 union r2 union r3); {[i]: Exists ( alpha : i = 4+15alpha && 4 <= i <= 94)} union {[i]: Exists ( alpha : 1, 5alpha+1 <= i <= 100, 5alpha+3)} >>> >>> # >>> # additional test cases >>> # >>> r1:={[i]:0<=i<=100}; >>> r2:={[i]: 10<=i<=100 && exists (alpha: i=1+5alpha)}; >>> PairwiseCheck (r1 union r2); {[i]: 0 <= i <= 100} >>> ConvexRepresentation (r1 union r2); {[i]: 0 <= i <= 100} >>>