#ifndef OMEGATOOLS_HH #define OMEGATOOLS_HH #include #include #include "dep.hh" #include "ir_code.hh" std::string tmp_e(); void exp2formula(IR_Code *ir, omega::Relation &r, omega::F_And *f_root, std::vector &freevars, omega::CG_outputRepr *repr, omega::Variable_ID lhs, char side, IR_CONDITION_TYPE rel, bool destroy); omega::Relation arrays2relation(IR_Code *ir, std::vector &freevars, const IR_ArrayRef *ref_src, const omega::Relation &IS_w, const IR_ArrayRef *ref_dst, const omega::Relation &IS_r); std::pair, std::vector > relation2dependences( const IR_ArrayRef *ref_src, const IR_ArrayRef *ref_dst, const omega::Relation &r); void exp2constraint(IR_Code *ir, omega::Relation &r, omega::F_And *f_root, std::vector &freevars, omega::CG_outputRepr *repr, bool destroy); // suif legacy code // void suif2formula(Relation &r, F_And *f_root, // std::vector &freevars, // operand op, Variable_ID lhs, // char side, char rel); // void suif2formula(Relation &r, F_And *f_root, // std::vector &freevars, // instruction *ins, Variable_ID lhs, // char side, char rel); // void add_loop_stride_constraints(omega::Relation &r, omega::F_And *f_root, // std::vector &freevars, // tree_for *tnf, char side); // void add_loop_bound_constraints(IR_Code *ir, omega::Relation &r, omega::F_And *f_root, // std::vector &freevars, // tree_for *tnf, // char upper_or_lower, char side, IR_CONDITION_TYPE rel); // Relation loop_iteration_space(std::vector &freevars, // tree_node *tn, std::vector &loops); // Relation arrays2relation(std::vector &freevars, // in_array *ia_w, const Relation &IS1, // in_array *ia_r, const Relation &IS2); // std::vector relation2dependences(IR_Code *ir, in_array *ia_w, // in_array *ia_r, const Relation &r); // end of suif legacy code bool is_single_iteration(const omega::Relation &r, int dim); void assign_const(omega::Relation &r, int dim, int val); int get_const(const omega::Relation &r, int dim, omega::Var_Kind type); omega::Variable_ID find_index(omega::Relation &r, const std::string &s, char side); omega::Relation permute_relation(const std::vector &pi); omega::Relation get_loop_bound(const omega::Relation &r, int dim); bool is_single_loop_iteration(const omega::Relation &r, int level, const omega::Relation &known); omega::Relation get_loop_bound(const omega::Relation &r, int level, const omega::Relation &known); omega::Relation get_max_loop_bound(const std::vector &r, int dim); omega::Relation get_min_loop_bound(const std::vector &r, int dim); void add_loop_stride(omega::Relation &r, const omega::Relation &bound, int dim, int stride); bool is_inner_loop_depend_on_level(const omega::Relation &r, int level, const omega::Relation &known); // void adjust_loop_bound(omega::Relation &r, int dim, int adjustment, std::vector globals = std::vector()); omega::Relation adjust_loop_bound(const omega::Relation &r, int level, int adjustment); // void adjust_loop_bound(Relation &r, int dim, int adjustment); // void adjust_loop_bound(Relation &r, int dim, Free_Var_Decl *global_var, int adjustment); // boolean is_private_statement(const omega::Relation &r, int dim); // coef_t mod(const Relation &r, Variable_ID v, int dividend); enum LexicalOrderType {LEX_MATCH, LEX_BEFORE, LEX_AFTER, LEX_UNKNOWN}; // template // LexicalOrderType lexical_order(const std::vector &a, const std::vector &b) { // int size = min(a.size(), b.size()); // for (int i = 0; i < size; i++) { // if (a[i] < b[i]) // return LEX_BEFORE; // else if (b[i] < a[i]) // return LEX_AFTER; // } // if (a.size() < b.size()) // return LEX_BEFORE; // else if (b.size() < a.size()) // return LEX_AFTER; // else // return LEX_MATCH; // } // struct LoopException { // std::string descr; // LoopException(const std::string &s): descr(s) {}; // }; #endif