#include "chilldebug.h" #include #include #include #include #include #include #include "loop.hh" #include "ir_code.hh" #include "chillmodule.hh" using namespace omega; extern Loop *myloop; extern IR_Code *ir_code; extern bool is_interactive; std::string procedure_name; std::string source_filename; std::string dest_filename; int loop_start_num; int loop_end_num; int effort; extern std::vector ir_controls; extern std::vector loops; // ----------------------- // // CHiLL support functions // // ----------------------- // // not sure yet if this actually needs to be exposed to the python interface // these four functions are here to maintain similarity to the Lua interface int get_loop_num_start() { return loop_start_num; } int get_loop_num_end() { return loop_end_num; } static void set_loop_num_start(int start_num) { loop_start_num = start_num; } static void set_loop_num_end(int end_num) { loop_end_num = end_num; } void finalize_loop(int loop_num_start, int loop_num_end) { if (loop_num_start == loop_num_end) { ir_code->ReplaceCode(ir_controls[loops[loop_num_start]], myloop->getCode(effort)); ir_controls[loops[loop_num_start]] = NULL; } else { std::vector parm; for (int i = loops[loop_num_start]; i <= loops[loop_num_end]; i++) parm.push_back(ir_controls[i]); IR_Block *block = ir_code->MergeNeighboringControlStructures(parm); ir_code->ReplaceCode(block, myloop->getCode(effort)); for (int i = loops[loop_num_start]; i <= loops[loop_num_end]; i++) { delete ir_controls[i]; ir_controls[i] = NULL; } } delete myloop; } void finalize_loop() { int loop_num_start = get_loop_num_start(); int loop_num_end = get_loop_num_end(); finalize_loop(loop_num_start, loop_num_end); } static void init_loop(int loop_num_start, int loop_num_end) { if (source_filename.empty()) { CHILL_ERROR("source file not set when initializing the loop"); if (!is_interactive) exit(2); } else { if (ir_code == NULL) { if (dest_filename != "") ir_code = new IR_clangCode(source_filename.c_str(), procedure_name.c_str(), dest_filename.c_str()); else ir_code = new IR_clangCode(source_filename.c_str(), procedure_name.c_str()); IR_Block *block = ir_code->GetCode(); ir_controls = ir_code->FindOneLevelControlStructure(block); for (int i = 0; i < ir_controls.size(); i++) { if (ir_controls[i]->type() == IR_CONTROL_LOOP) loops.push_back(i); } delete block; } if (myloop != NULL && myloop->isInitialized()) { finalize_loop(); } } set_loop_num_start(loop_num_start); set_loop_num_end(loop_num_end); if (loop_num_end < loop_num_start) { CHILL_ERROR("the last loop must be after the start loop"); if (!is_interactive) exit(2); } if (loop_num_end >= loops.size()) { CHILL_ERROR("loop %d does not exist", loop_num_end); if (!is_interactive) exit(2); } std::vector parm; for (int i = loops[loop_num_start]; i <= loops[loop_num_end]; i++) { if (ir_controls[i] == NULL) { CHILL_ERROR("loop has already been processed"); if (!is_interactive) exit(2); } parm.push_back(ir_controls[i]); } IR_Block *block = ir_code->MergeNeighboringControlStructures(parm); myloop = new Loop(block); delete block; } // ----------------------- // // Python support funcions // // ----------------------- // // -- CHiLL support -- // static void strict_arg_num(PyObject *args, int arg_num, const char *fname = NULL) { int arg_given = PyTuple_Size(args); char msg[128]; if (arg_num != arg_given) { if (fname) sprintf(msg, "%s: expected %i arguments, was given %i.", fname, arg_num, arg_given); else sprintf(msg, "Expected %i argumets, was given %i.", arg_num, arg_given); throw std::runtime_error(msg); } } static int strict_arg_range(PyObject *args, int arg_min, int arg_max, const char *fname = NULL) { int arg_given = PyTuple_Size(args); char msg[128]; if (arg_given < arg_min || arg_given > arg_max) { if (fname) sprintf(msg, "%s: expected %i to %i arguments, was given %i.", fname, arg_min, arg_max, arg_given); else sprintf(msg, "Expected %i to %i, argumets, was given %i.", arg_min, arg_max, arg_given); throw std::runtime_error(msg); } return arg_given; } static int intArg(PyObject *args, int index, int dval = 0) { if (PyTuple_Size(args) <= index) return dval; int ival; PyObject *item = PyTuple_GetItem(args, index); Py_INCREF(item); if (PyInt_Check(item)) ival = PyInt_AsLong(item); else { CHILL_ERROR("argument at index %i is not an int\n", index); exit(-1); } return ival; } static std::string strArg(PyObject *args, int index, const char *dval = NULL) { if (PyTuple_Size(args) <= index) return dval; std::string strval; PyObject *item = PyTuple_GetItem(args, index); Py_INCREF(item); if (PyString_Check(item)) strval = strdup(PyString_AsString(item)); else { CHILL_ERROR("argument at index %i is not an string\n", index); exit(-1); } return strval; } static bool boolArg(PyObject *args, int index, bool dval = false) { if (PyTuple_Size(args) <= index) return dval; bool bval; PyObject *item = PyTuple_GetItem(args, index); Py_INCREF(item); return (bool) PyObject_IsTrue(item); } static bool tostringintmapvector(PyObject *args, int index, std::vector > &vec) { if (PyTuple_Size(args) <= index) return false; PyObject *seq = PyTuple_GetItem(args, index); //TODO: Typecheck int seq_len = PyList_Size(seq); for (int i = 0; i < seq_len; i++) { std::map map; PyObject *dict = PyList_GetItem(seq, i); PyObject *keys = PyDict_Keys(dict); //TODO: Typecheck int dict_len = PyList_Size(keys); for (int j = 0; j < dict_len; j++) { PyObject *key = PyList_GetItem(keys, j); PyObject *value = PyDict_GetItem(dict, key); std::string str_key = strdup(PyString_AsString(key)); int int_value = PyInt_AsLong(value); map[str_key] = int_value; } vec.push_back(map); } return true; } static bool tointvector(PyObject *seq, std::vector &vec) { //TODO: Typecheck int seq_len = PyList_Size(seq); for (int i = 0; i < seq_len; i++) { PyObject *item = PyList_GetItem(seq, i); vec.push_back(PyInt_AsLong(item)); } return true; } static bool tointvector(PyObject *args, int index, std::vector &vec) { if (PyTuple_Size(args) <= index) return false; PyObject *seq = PyTuple_GetItem(args, index); return tointvector(seq, vec); } static bool tointset(PyObject *args, int index, std::set &set) { if (PyTuple_Size(args) <= index) return false; PyObject *seq = PyTuple_GetItem(args, index); //TODO: Typecheck int seq_len = PyList_Size(seq); for (int i = 0; i < seq_len; i++) { PyObject *item = PyList_GetItem(seq, i); set.insert(PyInt_AsLong(item)); } return true; } static bool tointmatrix(PyObject *args, int index, std::vector > &mat) { if (PyTuple_Size(args) <= index) return false; PyObject *seq_one = PyTuple_GetItem(args, index); int seq_one_len = PyList_Size(seq_one); for (int i = 0; i < seq_one_len; i++) { std::vector vec; PyObject *seq_two = PyList_GetItem(seq_one, i); int seq_two_len = PyList_Size(seq_two); for (int j = 0; j < seq_two_len; j++) { PyObject *item = PyList_GetItem(seq_two, j); vec.push_back(PyInt_AsLong(item)); } mat.push_back(vec); } return true; } // ------------------------- // // CHiLL interface functions // // ------------------------- // static PyObject *chill_source(PyObject *self, PyObject *args) { strict_arg_num(args, 1, "source"); source_filename = strArg(args, 0); Py_RETURN_NONE; } static PyObject * chill_dest(PyObject *self, PyObject* args) { strict_arg_num(args, 1, "destination"); dest_filename = strArg(args, 0); Py_RETURN_NONE; } static PyObject *chill_effort(PyObject *self, PyObject *args) { strict_arg_num(args, 1, "effort"); effort = intArg(args,0); Py_RETURN_NONE; } static PyObject *chill_procedure(PyObject *self, PyObject *args) { if (!procedure_name.empty()) { CHILL_ERROR("only one procedure can be handled in a script"); if (!is_interactive) exit(2); } procedure_name = strArg(args, 0); Py_RETURN_NONE; } static PyObject *chill_loop(PyObject *self, PyObject *args) { // loop (n) // loop (n:m) int nargs = PyTuple_Size(args); int start_num; int end_num; if (nargs == 1) { start_num = intArg(args, 0); end_num = start_num; } else if (nargs == 2) { start_num = intArg(args, 0); end_num = intArg(args, 1); } else { CHILL_ERROR("loop takes one or two arguments"); if (!is_interactive) exit(2); } set_loop_num_start(start_num); set_loop_num_end(end_num); init_loop(start_num, end_num); Py_RETURN_NONE; } static PyObject *chill_print_code(PyObject *self, PyObject *args) { strict_arg_num(args, 0, "print_code"); myloop->printCode(effort); printf("\n"); Py_RETURN_NONE; } static PyObject *chill_print_dep(PyObject *self, PyObject *args) { strict_arg_num(args, 0, "print_dep"); myloop->printDependenceGraph(); Py_RETURN_NONE; } static PyObject *chill_print_space(PyObject *self, PyObject *args) { strict_arg_num(args, 0, "print_space"); myloop->printIterationSpace(); Py_RETURN_NONE; } static void add_known(std::string cond_expr) { int num_dim = myloop->known.n_set(); std::vector > *cond; cond = parse_relation_vector(cond_expr.c_str()); Relation rel(num_dim); F_And *f_root = rel.add_and(); for (int j = 0; j < cond->size(); j++) { GEQ_Handle h = f_root->add_GEQ(); for (std::map::iterator it = (*cond)[j].begin(); it != (*cond)[j].end(); it++) { try { int dim = std::stoi(it->first); if (dim == 0) h.update_const(it->second); else throw std::invalid_argument("only symbolic variables are allowed in known condition"); } catch (std::invalid_argument &e) { Free_Var_Decl *g = NULL; for (unsigned i = 0; i < myloop->freevar.size(); i++) { std::string name = myloop->freevar[i]->base_name(); if (name == it->first) { g = myloop->freevar[i]; break; } } if (g == NULL) throw std::invalid_argument("symbolic variable " + it->first + " not found"); else h.update_coef(rel.get_local(g), it->second); } } } myloop->addKnown(rel); } static PyObject *chill_known(PyObject *self, PyObject *args) { strict_arg_num(args, 1, "known"); if (PyList_Check(PyTuple_GetItem(args, 0))) { PyObject *list = PyTuple_GetItem(args, 0); for (int i = 0; i < PyList_Size(list); i++) { add_known(std::string(PyString_AsString(PyList_GetItem(list, i)))); } } else { add_known(strArg(args, 0)); } Py_RETURN_NONE; } static PyObject *chill_remove_dep(PyObject *self, PyObject *args) { strict_arg_num(args, 0, "remove_dep"); int from = intArg(args, 0); int to = intArg(args, 1); myloop->removeDependence(from, to); Py_RETURN_NONE; } static PyObject *chill_original(PyObject *self, PyObject *args) { strict_arg_num(args, 0, "original"); myloop->original(); Py_RETURN_NONE; } static PyObject *chill_permute(PyObject *self, PyObject *args) { int nargs = strict_arg_range(args, 1, 3, "permute"); if ((nargs < 1) || (nargs > 3)) throw std::runtime_error("incorrect number of arguments in permute"); if (nargs == 1) { // premute ( vector ) std::vector pi; if (!tointvector(args, 0, pi)) throw std::runtime_error("first arg in permute(pi) must be an int vector"); myloop->permute(pi); } else if (nargs == 2) { // permute ( set, vector ) std::set active; std::vector pi; if (!tointset(args, 0, active)) throw std::runtime_error("the first argument in permute(active, pi) must be an int set"); if (!tointvector(args, 1, pi)) throw std::runtime_error("the second argument in permute(active, pi) must be an int vector"); myloop->permute(active, pi); } else if (nargs == 3) { int stmt_num = intArg(args, 1); int level = intArg(args, 2); std::vector pi; if (!tointvector(args, 3, pi)) throw std::runtime_error("the third argument in permute(stmt_num, level, pi) must be an int vector"); myloop->permute(stmt_num, level, pi); } Py_RETURN_NONE; } static PyObject *chill_pragma(PyObject *self, PyObject *args) { strict_arg_num(args, 3, "pragma"); int stmt_num = intArg(args, 1); int level = intArg(args, 1); std::string pragmaText = strArg(args, 2); myloop->pragma(stmt_num, level, pragmaText); Py_RETURN_NONE; } static PyObject *chill_prefetch(PyObject *self, PyObject *args) { strict_arg_num(args, 3, "prefetch"); int stmt_num = intArg(args, 0); int level = intArg(args, 1); std::string prefetchText = strArg(args, 2); int hint = intArg(args, 3); myloop->prefetch(stmt_num, level, prefetchText, hint); Py_RETURN_NONE; } static PyObject *chill_tile(PyObject *self, PyObject *args) { int nargs = strict_arg_range(args, 3, 7, "tile"); int stmt_num = intArg(args, 0); int level = intArg(args, 1); int tile_size = intArg(args, 2); if (nargs == 3) { myloop->tile(stmt_num, level, tile_size); } else if (nargs >= 4) { int outer_level = intArg(args, 3); if (nargs >= 5) { TilingMethodType method = StridedTile; int imethod = intArg(args, 4, 2); //< don't know if a default value is needed // check method input against expected values if (imethod == 0) method = StridedTile; else if (imethod == 1) method = CountedTile; else throw std::runtime_error("5th argument must be either strided or counted"); if (nargs >= 6) { int alignment_offset = intArg(args, 5); if (nargs == 7) { int alignment_multiple = intArg(args, 6, 1); myloop->tile(stmt_num, level, tile_size, outer_level, method, alignment_offset, alignment_multiple); } if (nargs == 6) myloop->tile(stmt_num, level, tile_size, outer_level, method, alignment_offset); } if (nargs == 5) myloop->tile(stmt_num, level, tile_size, outer_level, method); } if (nargs == 4) myloop->tile(stmt_num, level, tile_size, outer_level); } Py_RETURN_NONE; } static void chill_datacopy_vec(PyObject *args) { // Overload 1: bool datacopy( // const std::vector > > &array_ref_nums, // int level, // bool allow_extra_read = false, // int fastest_changing_dimension = -1, // int padding_stride = 1, // int padding_alignment = 4, // int memory_type = 0); std::vector > > array_ref_nums; // expect list(tuple(int,list(int))) // or dict(int,list(int)) if (PyList_CheckExact(PyTuple_GetItem(args, 0))) { PyObject *list = PyTuple_GetItem(args, 0); for (int i = 0; i < PyList_Size(list); i++) { PyObject *tup = PyList_GetItem(list, i); int index = PyLong_AsLong(PyTuple_GetItem(tup, 0)); std::vector vec; tointvector(PyTuple_GetItem(tup, 1), vec); array_ref_nums.push_back(std::pair >(index, vec)); } } else if (PyList_CheckExact(PyTuple_GetItem(args, 0))) { PyObject *dict = PyTuple_GetItem(args, 0); PyObject *klist = PyDict_Keys(dict); for (int ki = 0; ki < PyList_Size(klist); ki++) { PyObject *index = PyList_GetItem(klist, ki); std::vector vec; tointvector(PyDict_GetItem(dict, index), vec); array_ref_nums.push_back(std::pair >(PyLong_AsLong(index), vec)); } Py_DECREF(klist); } else { //TODO: this should never happen } int level = intArg(args, 1); bool allow_extra_read = boolArg(args, 2, false); int fastest_changing_dimension = intArg(args, 3, -1); int padding_stride = intArg(args, 4, 1); int padding_alignment = intArg(args, 5, 4); int memory_type = intArg(args, 6, 0); myloop->datacopy(array_ref_nums, level, allow_extra_read, fastest_changing_dimension, padding_stride, padding_alignment, memory_type); } static void chill_datacopy_int(PyObject *args) { int stmt_num = intArg(args, 0); int level = intArg(args, 1); std::string array_name = strArg(args, 2, 0); bool allow_extra_read = boolArg(args, 3, false); int fastest_changing_dimension = intArg(args, 4, -1); int padding_stride = intArg(args, 5, 1); int padding_alignment = intArg(args, 6, 4); int memory_type = intArg(args, 7, 0); myloop->datacopy(stmt_num, level, array_name, allow_extra_read, fastest_changing_dimension, padding_stride, padding_alignment, memory_type); } static PyObject *chill_datacopy(PyObject *self, PyObject *args) { // Overload 2: bool datacopy(int stmt_num, int level, const std::string &array_name, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 4, int memory_type = 0); int nargs = strict_arg_range(args, 3, 7, "datacopy"); if (PyList_CheckExact(PyTuple_GetItem(args, 0)) || PyDict_CheckExact(PyTuple_GetItem(args, 0))) { chill_datacopy_vec(args); } else { chill_datacopy_int(args); } Py_RETURN_NONE; } static PyObject *chill_datacopy_privatized(PyObject *self, PyObject *args) { // bool datacopy_privatized(int stmt_num, int level, const std::string &array_name, const std::vector &privatized_levels, bool allow_extra_read = false, int fastest_changing_dimension = -1, int padding_stride = 1, int padding_alignment = 1, int memory_type = 0); int nargs = strict_arg_range(args, 4, 9, "datacopy_privatized"); int stmt_num = intArg(args, 0); int level = intArg(args, 1); std::string array_name = strArg(args, 2); std::vector privatized_levels; tointvector(args, 3, privatized_levels); bool allow_extra_read = boolArg(args, 4, false); int fastest_changing_dimension = intArg(args, 5, -1); int padding_stride = intArg(args, 6, 1); int padding_alignment = intArg(args, 7, 1); int memory_type = intArg(args, 8); myloop->datacopy_privatized(stmt_num, level, array_name, privatized_levels, allow_extra_read, fastest_changing_dimension, padding_stride, padding_alignment, memory_type); Py_RETURN_NONE; } static PyObject *chill_unroll(PyObject *self, PyObject *args) { int nargs = strict_arg_range(args, 3, 4, "unroll"); //std::set unroll(int stmt_num, int level, int unroll_amount, std::vector< std::vector >idxNames= std::vector< std::vector >(), int cleanup_split_level = 0); int stmt_num = intArg(args, 0); int level = intArg(args, 1); int unroll_amount = intArg(args, 2); std::vector > idxNames = std::vector >(); int cleanup_split_level = intArg(args, 3); myloop->unroll(stmt_num, level, unroll_amount, idxNames, cleanup_split_level); Py_RETURN_NONE; } static PyObject *chill_unroll_extra(PyObject *self, PyObject *args) { int nargs = strict_arg_range(args, 3, 4, "unroll_extra"); int stmt_num = intArg(args, 0); int level = intArg(args, 1); int unroll_amount = intArg(args, 2); int cleanup_split_level = intArg(args, 3, 0); myloop->unroll_extra(stmt_num, level, unroll_amount, cleanup_split_level); Py_RETURN_NONE; } static PyObject *chill_split(PyObject *self, PyObject *args) { strict_arg_num(args, 3, "split"); int stmt_num = intArg(args, 0); int level = intArg(args, 1); int num_dim = myloop->stmt[stmt_num].xform.n_out(); std::vector > *cond; std::string cond_expr = strArg(args, 2); cond = parse_relation_vector(cond_expr.c_str()); Relation rel((num_dim - 1) / 2); F_And *f_root = rel.add_and(); for (int j = 0; j < cond->size(); j++) { GEQ_Handle h = f_root->add_GEQ(); for (std::map::iterator it = (*cond)[j].begin(); it != (*cond)[j].end(); it++) { try { int dim = from_string(it->first); if (dim == 0) h.update_const(it->second); else { if (dim > (num_dim - 1) / 2) throw std::invalid_argument("invalid loop level " + to_string(dim) + " in split condition"); h.update_coef(rel.set_var(dim), it->second); } } catch (std::ios::failure e) { Free_Var_Decl *g = NULL; for (unsigned i = 0; i < myloop->freevar.size(); i++) { std::string name = myloop->freevar[i]->base_name(); if (name == it->first) { g = myloop->freevar[i]; break; } } if (g == NULL) throw std::invalid_argument("unrecognized variable " + to_string(it->first.c_str())); h.update_coef(rel.get_local(g), it->second); } } } myloop->split(stmt_num, level, rel); Py_RETURN_NONE; } static PyObject *chill_nonsingular(PyObject *self, PyObject *args) { std::vector > mat; tointmatrix(args, 0, mat); myloop->nonsingular(mat); Py_RETURN_NONE; } static PyObject *chill_skew(PyObject *self, PyObject *args) { std::set stmt_nums; std::vector skew_amounts; int level = intArg(args, 1); tointset(args, 0, stmt_nums); tointvector(args, 2, skew_amounts); myloop->skew(stmt_nums, level, skew_amounts); Py_RETURN_NONE; } static PyObject *chill_scale(PyObject *self, PyObject *args) { strict_arg_num(args, 3); std::set stmt_nums; int level = intArg(args, 1); int scale_amount = intArg(args, 2); tointset(args, 0, stmt_nums); myloop->scale(stmt_nums, level, scale_amount); Py_RETURN_NONE; } static PyObject *chill_reverse(PyObject *self, PyObject *args) { strict_arg_num(args, 2); std::set stmt_nums; int level = intArg(args, 1); tointset(args, 0, stmt_nums); myloop->reverse(stmt_nums, level); Py_RETURN_NONE; } static PyObject *chill_shift(PyObject *self, PyObject *args) { strict_arg_num(args, 3); std::set stmt_nums; int level = intArg(args, 1); int shift_amount = intArg(args, 2); tointset(args, 0, stmt_nums); myloop->shift(stmt_nums, level, shift_amount); Py_RETURN_NONE; } static PyObject *chill_shift_to(PyObject *self, PyObject *args) { strict_arg_num(args, 3); int stmt_num = intArg(args, 0); int level = intArg(args, 1); int absolute_pos = intArg(args, 2); myloop->shift_to(stmt_num, level, absolute_pos); Py_RETURN_NONE; } static PyObject *chill_peel(PyObject *self, PyObject *args) { strict_arg_range(args, 2, 3); int stmt_num = intArg(args, 0); int level = intArg(args, 1); int amount = intArg(args, 2); myloop->peel(stmt_num, level, amount); Py_RETURN_NONE; } static PyObject *chill_fuse(PyObject *self, PyObject *args) { strict_arg_num(args, 2); std::set stmt_nums; int level = intArg(args, 1); tointset(args, 0, stmt_nums); myloop->fuse(stmt_nums, level); Py_RETURN_NONE; } static PyObject *chill_distribute(PyObject *self, PyObject *args) { strict_arg_num(args, 2); std::set stmts; int level = intArg(args, 1); tointset(args, 0, stmts); myloop->distribute(stmts, level); Py_RETURN_NONE; } static PyObject * chill_num_statements(PyObject *self, PyObject *args) { int num = myloop->stmt.size(); return Py_BuildValue("i", num); // BEWARE "d" is DOUBLE, not int } static PyMethodDef ChillMethods[] = { //python name C routine parameter passing comment {"source", chill_source, METH_VARARGS, "set source file for chill script"}, {"destination", chill_dest, METH_VARARGS, "set destination file for generated source"}, {"effort", chill_effort, METH_VARARGS, "set the effort to remove loop overhead"}, {"procedure", chill_procedure, METH_VARARGS, "set the name of the procedure"}, {"loop", chill_loop, METH_VARARGS, "indicate which loop to optimize"}, {"print_code", chill_print_code, METH_VARARGS, "print generated code"}, {"print_dep", chill_print_dep, METH_VARARGS, "print the dependencies graph"}, {"print_space", chill_print_space, METH_VARARGS, "print space"}, {"known", chill_known, METH_VARARGS, "knwon"}, {"remove_dep", chill_remove_dep, METH_VARARGS, "remove dependency i suppose"}, {"original", chill_original, METH_VARARGS, "original"}, {"permute", chill_permute, METH_VARARGS, "permute"}, {"pragma", chill_pragma, METH_VARARGS, "pragma"}, {"prefetch", chill_prefetch, METH_VARARGS, "prefetch"}, {"tile", chill_tile, METH_VARARGS, "tile"}, {"datacopy", chill_datacopy, METH_VARARGS, "datacopy"}, {"datacopy_privitized", chill_datacopy_privatized, METH_VARARGS, "datacopy_privatized"}, {"unroll", chill_unroll, METH_VARARGS, "unroll"}, {"unroll_extra", chill_unroll_extra, METH_VARARGS, "unroll_extra"}, {"split", chill_split, METH_VARARGS, "split"}, {"nonsingular", chill_nonsingular, METH_VARARGS, "nonsingular"}, {"skew", chill_skew, METH_VARARGS, "skew"}, {"scale", chill_scale, METH_VARARGS, "scale"}, {"reverse", chill_reverse, METH_VARARGS, "reverse"}, {"shift", chill_shift, METH_VARARGS, "shift"}, {"shift_to", chill_shift_to, METH_VARARGS, "shift_to"}, {"peel", chill_peel, METH_VARARGS, "peel"}, {"fuse", chill_fuse, METH_VARARGS, "fuse"}, {"distribute", chill_distribute, METH_VARARGS, "distribute"}, {"num_statements", chill_num_statements, METH_VARARGS, "number of statements in the current loop"}, {NULL, NULL, 0, NULL} }; static void register_globals(PyObject *m) { // Preset globals PyModule_AddStringConstant(m, "VERSION", CHILL_BUILD_VERSION); PyModule_AddStringConstant(m, "dest", "C"); PyModule_AddStringConstant(m, "C", "C"); // Tile method PyModule_AddIntConstant(m, "strided", 0); PyModule_AddIntConstant(m, "counted", 1); // Memory mode PyModule_AddIntConstant(m, "global", 0); PyModule_AddIntConstant(m, "shared", 1); PyModule_AddIntConstant(m, "textured", 2); // Bool flags PyModule_AddIntConstant(m, "sync", 1); } PyMODINIT_FUNC initchill(void) // pass C methods to python { CHILL_DEBUG_PRINT("set up C methods to be called from python\n"); PyObject *m = Py_InitModule("chill", ChillMethods); dest_filename = ""; effort = 1; register_globals(m); }