module Mahjong.Hand where import Mahjong.Set import Mahjong.Tile import Data.List (sort) import Data.Maybe import Control.Monad data Hand = Hand {getHand::MSet, getCall::[MSet]} deriving (Show) max2Win = 7 pairs :: Int -> [MTile] -> Int pairs c (h:hs) = (if length (filter (==h) hs) >= c then 1 else 0) + (pairs c $ filter (/=h) hs) pairs c [] = 0 seven' h = 7 - (pairs 1 h) musou' h = 14 - (pairs 0 h') - (if pairs 1 h' > 0 then 1 else 0) where h' = filter is19 h seven = seven'.getHand musou = musou'.getHand -- For normal xAAA+yBCD+EE is easy -- First calculate the maximum number of x+y then the number of partials normal h = minimum $ map nlisten $ normalSet h normalSet :: Hand -> [([MSet],[MSet],[MSet],MSet)] normalSet h = do (set,r) <- setTest $ sort $ getHand h (part,rr) <- partTest $ sort $ r return (getCall h,set,part,rr) nlisten :: ([MSet],[MSet],[MSet],MSet) -> Int nlisten (call,set,part,rr) = rem where pair = min 1 $ length (filter (\(t1:t2:t) -> t1==t2) part) cal = 4 - (length call) - (length set) rem = cal * 2 - (min cal ((length part)-pair)) + 1 - pair setTest :: MSet -> [([MSet],MSet)] setTest t@(t1:t2:t3:ts) = (bcdTest)++(aaaTest)++other where aaaTest = do guard (t1==t2 && t1==t3) (res,h) <- setTest ts return ([t1,t2,t3]:res,h) jt1 = Just t1 jn1 = nextTile jt1 jn2 = nextTile jn1 bcdTest = do (tt,rem) <- tryTiles [jt1,jn1,jn2] t (res,h) <- setTest rem return (tt:res,h) other = do (res,h) <- setTest $ tail t return (res,t1:h) setTest t = [([],t)] partTest :: MSet -> [([MSet],MSet)] partTest t@(t1:t2:ts) = aaTest ++ bcTest ++ bdTest ++ other where aaTest = do guard (t1==t2) (res,h) <- partTest ts return ([t1,t2]:res,h) jt1 = Just t1 jn1 = nextTile jt1 jn2 = nextTile jn1 bcTest = do (tt,rem) <- tryTiles [jn1,jt1] t (res,h) <- partTest rem return (tt:res,h) bdTest = do (tt,rem) <- tryTiles [jn2,jt1] t (res,h) <- partTest rem return (tt:res,h) other = do (res,h) <- partTest $ tail t return (res,t1:h) partTest t = [([],t)] rmTile :: Eq a => [a] -> a -> [a] rmTile ts t = (takeWhile (/=t) ts) ++ if h == [] then [] else tail h where h = (dropWhile (/=t) ts) listen :: Hand -> Int listen h = max 0 $ minimum $ [seven,musou,normal] <*> [h] nextTileSet :: Hand -> MSet nextTileSet h@(Hand hand call) = [ tile | tile <- orderedTile, (>) l $ listen $ Hand (tile:hand) call] where l = listen h trySet :: [[Maybe MTile]] -> Hand -> [(MSet,Hand)] trySet tiles h@(Hand hand call) = map (\(tt,rr) -> (tt,Hand rr (tt:call))) $ concat $ tryTiles <$> tiles <*> [hand] chi :: Hand -> MTile -> [(MSet,Hand)] chi h t = trySet [[p2,p1],[p1,n1],[n1,n2]] h where p1 = prevTile $ Just t p2 = prevTile p1 n1 = nextTile $ Just t n2 = nextTile n1 peng :: Hand -> MTile -> [(MSet,Hand)] peng h t = trySet [[jt,jt]] h where jt = Just t ankang :: Hand -> MTile -> [(MSet,Hand)] ankang h@(Hand hand call) t = trySet (map ((take 4).repeat.Just) orderedTile) (Hand (t:hand) call) mingkang :: Hand -> MTile -> [(MSet,Hand)] mingkang h t = trySet (map ((take 3).repeat.Just) [t]) h jiakang :: Hand -> MTile -> [(MSet,Hand)] jiakang h@(Hand hand call) t = [ (tt,Hand hand ((ht:tt):(call `rmTile` tt)))| tt<-call, let ht = head tt, let ts = (t:hand), ht `elem` ts] tryTiles :: [Maybe MTile] -> MSet -> [(MSet,MSet)] tryTiles tl ts = maybeToList $ do tt <- sequence tl guard $ all (`elem` ts) tt return (tt,foldl rmTile ts tt)