#include #include #include #include #include "tools/easylogging++.h" #include "model/ranksvmtn.h" #include "tools/fileDataProvider.h" #include "tools/matrixIO.h" #include INITIALIZE_EASYLOGGINGPP using namespace Eigen; namespace po = boost::program_options; po::variables_map vm; int train() { RSVM *rsvm; rsvm = RSVM::loadModel(vm["model"].as()); FileDP dp(vm["feature"].as()); // Generic training operations dp.open(); DataList D; LOG(INFO)<<"Training started"; dp.getDataSet(D); LOG(INFO)<<"Read "<train(D); LOG(INFO)<<"Training finished,saving model"; dp.close(); rsvm->saveModel(vm["output"].as().c_str()); delete rsvm; return 0; } int predict() { RSVM *rsvm; rsvm = RSVM::loadModel(vm["model"].as().c_str()); FileDP dp(vm["feature"].as().c_str()); dp.open(); DataList D; std::vector L; LOG(INFO)<<"Prediction started"; while (!dp.EOFile()) { dp.getDataSet(D); LOG(INFO)<<"Read "<predict(D,L); } LOG(INFO)<<"Training finished,saving prediction"; std::ofstream fout(vm["output"].as().c_str()); for (int i=0; i(), "set input model file") ("output,o", po::value(), "set output model/prediction file") ("feature,i", po::value(), "set input feature file"); // Parsing program options po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); /* Conjugate Gradient method test MatrixXd A(3,3); VectorXd b(3),x(3); A<< 1,2,3,2,2,4,3,4,1; b<< 1,1,1; x<< 0,0,0; cg_solve(A,b,x); write_stream(std::cout,x);*/ // Print help if necessary if (vm.count("help") || !(vm.count("train") || vm.count("validate") || vm.count("predict"))) { std::cout << desc; return 0; } if (vm.count("train")) { LOG(INFO) << "Program option: training"; train(); } else if (vm.count("validate")) { LOG(INFO) << "Program option: validate"; validate(); } else if (vm.count("predict")) { LOG(INFO) << "Program option: predict"; predict(); } return 0; }