#include "ranksvmtn.h" #include #include #include"../tools/matrixIO.h" using namespace std; using namespace Eigen; // Main terminating criteria const int maxiter = 50; // max iteration count const double prec=1e-10; // precision // conjugate gradient const double cg_prec=1e-10; // precision const int cg_maxiter = 5; // not worth having a large number const int ls_maxiter = 10; // line search const double line_prec=1e-10; // precision const double line_turb=1e-15; // purturbation void cal_Dw(RidList &D,const VectorXd &w, VectorXd &Dw) { int n = D.getSize(); #pragma omp parallel for for (int i=0;i &rank,const VectorXd &corr,const VectorXd &alpha,const VectorXd s,VectorXd &Hs) { int n = D.getSize(); int q = D.getqSize(); Hs = VectorXd::Zero(s.rows()); VectorXd Ds(n); cal_Dw(D,s,Ds); VectorXd gamma(n); for (int i=0;i=0;--j) if (corr[rank[i+j]]>0) gamma[rank[i+j]]=g; else g+=Ds[rank[i+j]]; g=0; i+=q; for (int j = q;j>0;--j) if (corr[rank[i-j]]<0) gamma[rank[i-j]]=g; else g+=Ds[rank[i-j]]; } VectorXd tmp = alpha.cwiseProduct(Ds)-gamma; VectorXd res = 0*s; for (int i=0;i &rank,const VectorXd &corr,const VectorXd &alph,const VectorXd &b, VectorXd &x) { double alpha,beta,r_1,r_2; int iter=0; VectorXd q; VectorXd Hs; cal_Hs(D,rank,corr,alph,x,Hs); VectorXd res = b - Hs; VectorXd p = res; while (1) { // Non preconditioned version r_1 = res.dot(res); if (iter) LOG(INFO) << "CG iter "<= cg_maxiter) { LOG(INFO) << "CG forced termination by maxiter"; break; } if (iter){ beta = r_1 / r_2; p = res + p * beta; } cal_Hs(D,rank,corr,alph,p,q); alpha = r_1/p.dot(q); x=x+p*alpha; res=res-q*alpha; ++iter; r_2=r_1; } return 0; } void ranksort(int l,int r,vector &rank,VectorXd &ref) { int i=l,j=r,k; double mid=ref(rank[(l+r)>>1]); while (i<=j) { while (ref[rank[i]]mid) --j; if (i<=j) { k=rank[i]; rank[i]=rank[j]; rank[j]=k; ++i; --j; } } if (j>l) ranksort(l,j,rank,ref); if (i &rank,VectorXd &yt,VectorXd &alpha,VectorXd &beta) { long n = dw.rows(); int q = D.getqSize(); yt = dw - corr; alpha=VectorXd::Zero(n); beta=VectorXd::Zero(n); for (int i=0;i=i;--j) if (corr[rank[j]]>0) { alpha[rank[j]]=a; beta[rank[j]]=b; } else { a+=1; b+=yt[rank[j]]; } } } // line search using newton method int line_search(const VectorXd &w,RidList &D,const VectorXd &corr,const VectorXd &step,double &t) { int n=D.getSize(); VectorXd Dd(n); cal_Dw(D,step,Dd); VectorXd alpha,beta,yt; VectorXd grad; VectorXd Hs; vector rank(n); int iter = 0; double g,h; t = 0; while (1) { grad=w+t*step; cal_Dw(D,grad,Dd); cal_alpha_beta(Dd,corr,D,rank,yt,alpha,beta); VectorXd tmp = alpha.cwiseProduct(yt)-beta; VectorXd res = 0*grad; for (int i=0;i= ls_maxiter) { LOG(INFO) << "line search forced termination by maxiter"; break; } } return 0; } int train_orig(int fsize, RidList &Data,const VectorXd &corr,VectorXd &weight){ int iter = 0; long n=Data.getSize(); LOG(INFO) << "training with feature size:" << fsize << " Data size:" << n << " Query size:" << Data.getqSize(); VectorXd grad(fsize); VectorXd step(fsize); vector rank(n); double obj,t; VectorXd dw(n); VectorXd yt; VectorXd alpha,beta; while (true) { cal_Dw(Data,weight,dw); cal_alpha_beta(dw,corr,Data,rank,yt,alpha,beta); // Generate support vector matrix sv & gradient obj = (weight.dot(weight) + C*(alpha.dot(yt.cwiseProduct(yt))-beta.dot(yt)))/2; VectorXd tmp = alpha.cwiseProduct(yt)-beta; VectorXd res = 0*weight; for (int i=0;i maxiter) { LOG(INFO)<< "Maxiter reached"; break; } if (nprec < prec) break; } return 0; } int RSVMTN::train(RidList &D){ VectorXd corr(D.getSize()); vector A1,A2; int i,j; LOG(INFO)<<"Processing input"; for (i=0;i0?0.5:-0.5; train_orig(fsize,D,corr,model.weight); return 0; }; int RSVMTN::predict(RidList &D, vector &res){ res.clear(); for (int i=0;i