#include <iostream> #include <Eigen/Dense> #include <boost/program_options.hpp> #include <list> #include "tools/easylogging++.h" #include "model/ranksvmtn.h" #include "tools/fileDataProvider.h" #include "model/rankaccu.h" INITIALIZE_EASYLOGGINGPP using namespace Eigen; using namespace std; namespace po = boost::program_options; po::variables_map vm; typedef int (*mainFunc)(DataProvider &dp); int train(DataProvider &dp) { RSVM *rsvm; rsvm = RSVM::loadModel(vm["model"].as<string>()); dp.open(); RidList D; LOG(INFO)<<"Training started"; dp.getAllDataSet(D); LOG(INFO)<<"Read "<<D.getSize()<<" entries with "<< D.getfSize()<<" features"; LOG(INFO)<<"C: "<<C<<" ,iter: "<<maxiter<<" ,prec: "<<prec; LOG(INFO)<<"cg_maxiter: "<<cg_maxiter<<" ,cg_prec: "<<cg_prec<<" ,ls_maxiter: "<<ls_maxiter<<" ,ls_prec: "<<ls_prec; rsvm->train(D); LOG(INFO)<<"Training finished,saving model"; dp.close(); rsvm->saveModel(vm["output"].as<string>().c_str()); delete rsvm; return 0; } int predict(DataProvider &dp) { RSVM *rsvm; rsvm = RSVM::loadModel(vm["model"].as<string>().c_str()); dp.open(); RidList D; vector<double> L; CMC cmc; Fscore f; LOG(INFO)<<"Prediction started"; ofstream fout; ostream* ot; if (vm.count("output")) { fout.open(vm["output"].as<string>().c_str()); ot=&fout; } else ot=&cout; dp.getAllDataSet(D); LOG(INFO)<<"Read "<<D.getSize()<<" entries with "<< D.getfSize()<<" features"; rsvm->predict(D,L); if (vm.count("validate")) { rank_accu(D,L); if (vm.count("cmc")) rank_CMC(D,L,cmc); } if (vm.count("predict")) { if (vm.count("pair")) { vector<double> pair; rank_pair(D,L,pair); for (int i=0;i<pair.size();++i) *ot<<pair[i]<<endl; } else if (vm.count("fscore")) { vector<double> pair; f.audit(D); pair=f.getFscore(); for (int i=0;i<D.getfSize();++i) *ot<<pair[i]<<endl; } else for (int i=0; i<L.size();++i) *ot<<L[i]<<endl; } LOG(INFO)<<"Finished"; if (vm.count("cmc")) { LOG(INFO)<< "CMC accounted over " <<cmc.getCount() << " queries"; *ot << "CMC"<<endl; vector<double> cur = cmc.getAcc(); for (int i = 0;i<CMC_MAX;++i) *ot << cur[i]<<endl; *ot << "AVG"<<endl; *ot << cmc.getAvg()/D.getqSize() <<endl; } if (vm.count("output")) fout.close(); dp.close(); delete rsvm; return 0; } int main(int argc, char **argv) { el::Configurations defaultConf; defaultConf.setToDefault(); // Values are always std::string defaultConf.setGlobally(el::ConfigurationType::Format, "%datetime %level %msg"); // Defining program options po::options_description desc("Allowed options"); desc.add_options() ("help,h", "produce help message") ("train,T", "training model") ("validate,V", "validate model") ("predict,P", "use model for prediction") ("cmc,C", "enable cmc auditing") ("debug,d", "show debug messages") ("single,s", "one from a pair") ("pair,p","get pair result") ("fscore,f","get F-score") ("model,m", po::value<string>(), "set input model file") ("output,o", po::value<string>(), "set output model/prediction file") ("feature,i", po::value<string>(), "set input feature file") ("c,c",po::value<double>(),"trades margin size against training error") ("iter",po::value<int>(),"iter main") ("prec",po::value<double>(),"prec main") ("cg_iter",po::value<int>(),"iter conjugate gradient") ("cg_prec",po::value<double>(),"prec conjugate gradient") ("ls_iter",po::value<int>(),"iter line search") ("ls_prec",po::value<double>(),"prec line search"); // Parsing program options po::store(po::parse_command_line(argc, argv, desc), vm); po::notify(vm); // Print help if necessary if (vm.count("help") || !(vm.count("train") || vm.count("validate") || vm.count("predict"))) { cout << desc; return 0; } if (!vm.count("debug")) defaultConf.setGlobally(el::ConfigurationType::Enabled, "false"); // default logger uses default configurations el::Loggers::reconfigureLogger("default", defaultConf); mainFunc mainf; RidList::single=vm.count("single")>0; if (vm.count("train")) { if (vm.count("c")) { C=vm["c"].as<double>(); } if (vm.count("iter")) { maxiter=vm["iter"].as<int>(); } if (vm.count("prec")) { prec=vm["prec"].as<double>(); } if (vm.count("cg_iter")) { cg_maxiter=vm["cg_iter"].as<int>(); } if (vm.count("cg_prec")) { cg_prec=vm["cg_prec"].as<double>(); } if (vm.count("ls_iter")) { ls_maxiter=vm["ls_iter"].as<int>(); } if (vm.count("ls_prec")) { ls_prec=vm["ls_prec"].as<double>(); } mainf = &train; } else if (vm.count("validate")||vm.count("predict")) { mainf = &predict; } else return 0; DataProvider* dp; if (vm["feature"].as<string>().find(".rid") == string::npos) dp = new FileDP(vm["feature"].as<string>()); else dp = new RidFileDP(vm["feature"].as<string>()); mainf(*dp); delete dp; return 0; }