diff options
author | Nate Sesti <sestinj@gmail.com> | 2023-07-17 14:54:36 -0700 |
---|---|---|
committer | Nate Sesti <sestinj@gmail.com> | 2023-07-17 14:54:36 -0700 |
commit | 1c9034cddeab0c131babe741e9145cc276bd7521 (patch) | |
tree | abf8a563f042335caa5df94dcd951e57964d4d4c /continuedev | |
parent | 05d665e65aaef62254a4da9a7a381f9984ff0db5 (diff) | |
download | sncontinue-1c9034cddeab0c131babe741e9145cc276bd7521.tar.gz sncontinue-1c9034cddeab0c131babe741e9145cc276bd7521.tar.bz2 sncontinue-1c9034cddeab0c131babe741e9145cc276bd7521.zip |
anthropic support
Diffstat (limited to 'continuedev')
-rw-r--r-- | continuedev/src/continuedev/core/sdk.py | 6 | ||||
-rw-r--r-- | continuedev/src/continuedev/libs/llm/anthropic.py | 50 | ||||
-rw-r--r-- | continuedev/src/continuedev/libs/util/count_tokens.py | 4 |
3 files changed, 39 insertions, 21 deletions
diff --git a/continuedev/src/continuedev/core/sdk.py b/continuedev/src/continuedev/core/sdk.py index d3501f08..280fefa8 100644 --- a/continuedev/src/continuedev/core/sdk.py +++ b/continuedev/src/continuedev/core/sdk.py @@ -11,7 +11,7 @@ from ..models.filesystem_edit import FileEdit, FileSystemEdit, AddFile, DeleteFi from ..models.filesystem import RangeInFile from ..libs.llm.hf_inference_api import HuggingFaceInferenceAPI from ..libs.llm.openai import OpenAI -from ..libs.llm.anthropic import Anthropic +from ..libs.llm.anthropic import AnthropicLLM from ..libs.llm.ggml import GGML from .observation import Observation from ..server.ide_protocol import AbstractIdeProtocolServer @@ -66,9 +66,9 @@ class Models: api_key = self.provider_keys["hf_inference_api"] return HuggingFaceInferenceAPI(api_key=api_key, model=model, system_message=self.system_message) - def __load_anthropic_model(self, model: str) -> Anthropic: + def __load_anthropic_model(self, model: str) -> AnthropicLLM: api_key = self.provider_keys["anthropic"] - return Anthropic(api_key=api_key, model=model) + return AnthropicLLM(api_key, model, self.system_message) @cached_property def claude2(self): diff --git a/continuedev/src/continuedev/libs/llm/anthropic.py b/continuedev/src/continuedev/libs/llm/anthropic.py index 2b8831f0..566f7150 100644 --- a/continuedev/src/continuedev/libs/llm/anthropic.py +++ b/continuedev/src/continuedev/libs/llm/anthropic.py @@ -3,7 +3,7 @@ from functools import cached_property import time from typing import Any, Coroutine, Dict, Generator, List, Union from ...core.main import ChatMessage -from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT +from anthropic import HUMAN_PROMPT, AI_PROMPT, AsyncAnthropic from ..llm import LLM from ..util.count_tokens import DEFAULT_MAX_TOKENS, compile_chat_messages, CHAT_MODELS, DEFAULT_ARGS, count_tokens, prune_raw_prompt_from_top @@ -11,14 +11,14 @@ from ..util.count_tokens import DEFAULT_MAX_TOKENS, compile_chat_messages, CHAT_ class AnthropicLLM(LLM): api_key: str default_model: str - anthropic: Anthropic + async_client: AsyncAnthropic def __init__(self, api_key: str, default_model: str, system_message: str = None): self.api_key = api_key self.default_model = default_model self.system_message = system_message - self.anthropic = Anthropic(api_key) + self.async_client = AsyncAnthropic(api_key=api_key) @cached_property def name(self): @@ -28,24 +28,39 @@ class AnthropicLLM(LLM): def default_args(self): return {**DEFAULT_ARGS, "model": self.default_model} + def _transform_args(self, args: Dict[str, Any]) -> Dict[str, Any]: + args = args.copy() + if "max_tokens" in args: + args["max_tokens_to_sample"] = args["max_tokens"] + del args["max_tokens"] + if "frequency_penalty" in args: + del args["frequency_penalty"] + if "presence_penalty" in args: + del args["presence_penalty"] + return args + def count_tokens(self, text: str): return count_tokens(self.default_model, text) - def __messages_to_prompt(self, messages: List[ChatMessage]) -> str: + def __messages_to_prompt(self, messages: List[Dict[str, str]]) -> str: prompt = "" + + # Anthropic prompt must start with a Human turn + if len(messages) > 0 and messages[0]["role"] != "user" and messages[0]["role"] != "system": + prompt += f"{HUMAN_PROMPT} Hello." for msg in messages: - prompt += f"{HUMAN_PROMPT if msg.role == 'user' else AI_PROMPT} {msg.content} " + prompt += f"{HUMAN_PROMPT if (msg['role'] == 'user' or msg['role'] == 'system') else AI_PROMPT} {msg['content']} " + prompt += AI_PROMPT return prompt async def stream_complete(self, prompt, with_history: List[ChatMessage] = [], **kwargs) -> Generator[Union[Any, List, Dict], None, None]: args = self.default_args.copy() args.update(kwargs) args["stream"] = True + args = self._transform_args(args) - async for chunk in await self.anthropic.completions.create( - model=args["model"], - max_tokens_to_sample=args["max_tokens"], + async for chunk in await self.async_client.completions.create( prompt=f"{HUMAN_PROMPT} {prompt} {AI_PROMPT}", **args ): @@ -55,25 +70,26 @@ class AnthropicLLM(LLM): args = self.default_args.copy() args.update(kwargs) args["stream"] = True + args = self._transform_args(args) messages = compile_chat_messages( - args["model"], messages, args["max_tokens"], functions=args.get("functions", None)) - async for chunk in await self.anthropic.completions.create( - model=args["model"], - max_tokens_to_sample=args["max_tokens"], + args["model"], messages, args["max_tokens_to_sample"], functions=args.get("functions", None)) + async for chunk in await self.async_client.completions.create( prompt=self.__messages_to_prompt(messages), **args ): - yield chunk.completion + yield { + "role": "assistant", + "content": chunk.completion + } async def complete(self, prompt: str, with_history: List[ChatMessage] = [], **kwargs) -> Coroutine[Any, Any, str]: args = {**self.default_args, **kwargs} + args = self._transform_args(args) messages = compile_chat_messages( - args["model"], with_history, args["max_tokens"], prompt, functions=None) - resp = (await self.anthropic.completions.create( - model=args["model"], - max_tokens_to_sample=args["max_tokens"], + args["model"], with_history, args["max_tokens_to_sample"], prompt, functions=None) + resp = (await self.async_client.completions.create( prompt=self.__messages_to_prompt(messages), **args )).completion diff --git a/continuedev/src/continuedev/libs/util/count_tokens.py b/continuedev/src/continuedev/libs/util/count_tokens.py index 1ca98fe6..1d5d6729 100644 --- a/continuedev/src/continuedev/libs/util/count_tokens.py +++ b/continuedev/src/continuedev/libs/util/count_tokens.py @@ -6,6 +6,7 @@ import tiktoken aliases = { "ggml": "gpt-3.5-turbo", + "claude-2": "gpt-3.5-turbo", } DEFAULT_MAX_TOKENS = 2048 MAX_TOKENS_FOR_MODEL = { @@ -13,7 +14,8 @@ MAX_TOKENS_FOR_MODEL = { "gpt-3.5-turbo-0613": 4096, "gpt-3.5-turbo-16k": 16384, "gpt-4": 8192, - "ggml": 2048 + "ggml": 2048, + "claude-2": 100000 } CHAT_MODELS = { "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-4", "gpt-3.5-turbo-0613" |