diff options
Diffstat (limited to 'continuedev')
-rw-r--r-- | continuedev/src/continuedev/core/config.py | 2 | ||||
-rw-r--r-- | continuedev/src/continuedev/core/sdk.py | 5 | ||||
-rw-r--r-- | continuedev/src/continuedev/libs/llm/ggml.py | 33 | ||||
-rw-r--r-- | continuedev/src/continuedev/steps/core/core.py | 5 |
4 files changed, 17 insertions, 28 deletions
diff --git a/continuedev/src/continuedev/core/config.py b/continuedev/src/continuedev/core/config.py index 6e430c04..957609c5 100644 --- a/continuedev/src/continuedev/core/config.py +++ b/continuedev/src/continuedev/core/config.py @@ -76,7 +76,7 @@ class ContinueConfig(BaseModel): server_url: Optional[str] = None allow_anonymous_telemetry: Optional[bool] = True default_model: Literal["gpt-3.5-turbo", "gpt-3.5-turbo-16k", - "gpt-4"] = 'gpt-4' + "gpt-4", "ggml"] = 'gpt-4' custom_commands: Optional[List[CustomCommand]] = [CustomCommand( name="test", description="This is an example custom command. Use /config to edit it and create more", diff --git a/continuedev/src/continuedev/core/sdk.py b/continuedev/src/continuedev/core/sdk.py index 9389e1e9..eb60109c 100644 --- a/continuedev/src/continuedev/core/sdk.py +++ b/continuedev/src/continuedev/core/sdk.py @@ -82,7 +82,7 @@ class Models: @cached_property def ggml(self): - return GGML("", "ggml") + return GGML() def __model_from_name(self, model_name: str): if model_name == "starcoder": @@ -93,12 +93,13 @@ class Models: return self.gpt3516k elif model_name == "gpt-4": return self.gpt4 + elif model_name == "ggml": + return self.ggml else: raise Exception(f"Unknown model {model_name}") @property def default(self): - return self.ggml default_model = self.sdk.config.default_model return self.__model_from_name(default_model) if default_model is not None else self.gpt4 diff --git a/continuedev/src/continuedev/libs/llm/ggml.py b/continuedev/src/continuedev/libs/llm/ggml.py index bef0d993..d3589b70 100644 --- a/continuedev/src/continuedev/libs/llm/ggml.py +++ b/continuedev/src/continuedev/libs/llm/ggml.py @@ -4,39 +4,27 @@ from typing import Any, Coroutine, Dict, Generator, List, Union import aiohttp from ...core.main import ChatMessage -import openai from ..llm import LLM -from ..util.count_tokens import DEFAULT_MAX_TOKENS, compile_chat_messages, CHAT_MODELS, DEFAULT_ARGS, count_tokens, prune_raw_prompt_from_top -import certifi -import ssl - -ca_bundle_path = certifi.where() -ssl_context = ssl.create_default_context(cafile=ca_bundle_path) +from ..util.count_tokens import compile_chat_messages, DEFAULT_ARGS, count_tokens SERVER_URL = "http://localhost:8000" class GGML(LLM): - api_key: str - default_model: str - def __init__(self, api_key: str, default_model: str, system_message: str = None): - self.api_key = api_key - self.default_model = default_model + def __init__(self, system_message: str = None): self.system_message = system_message - openai.api_key = api_key - @cached_property def name(self): - return self.default_model + return "ggml" @property def default_args(self): - return {**DEFAULT_ARGS, "model": self.default_model} + return {**DEFAULT_ARGS, "model": self.name, "max_tokens": 1024} def count_tokens(self, text: str): - return count_tokens(self.default_model, text) + return count_tokens(self.name, text) async def stream_complete(self, prompt, with_history: List[ChatMessage] = [], **kwargs) -> Generator[Union[Any, List, Dict], None, None]: args = self.default_args.copy() @@ -45,9 +33,9 @@ class GGML(LLM): args = {**self.default_args, **kwargs} messages = compile_chat_messages( - self.default_model, with_history, args["max_tokens"], prompt, functions=args.get("functions", None)) + self.name, with_history, args["max_tokens"], prompt, functions=args.get("functions", None)) - async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl_context=ssl_context)) as session: + async with aiohttp.ClientSession() as session: async with session.post(f"{SERVER_URL}/v1/completions", json={ "messages": messages, **args @@ -62,10 +50,10 @@ class GGML(LLM): async def stream_chat(self, messages: List[ChatMessage] = [], **kwargs) -> Generator[Union[Any, List, Dict], None, None]: args = {**self.default_args, **kwargs} messages = compile_chat_messages( - self.default_model, messages, args["max_tokens"], None, functions=args.get("functions", None)) + self.name, messages, args["max_tokens"], None, functions=args.get("functions", None)) args["stream"] = True - async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl_context=ssl_context)) as session: + async with aiohttp.ClientSession() as session: async with session.post(f"{SERVER_URL}/v1/chat/completions", json={ "messages": messages, **args @@ -77,7 +65,6 @@ class GGML(LLM): json_chunk = line[0].decode("utf-8") if json_chunk.startswith(": ping - ") or json_chunk.startswith("data: [DONE]"): continue - json_chunk = "{}" if json_chunk == "" else json_chunk chunks = json_chunk.split("\n") for chunk in chunks: if chunk.strip() != "": @@ -88,7 +75,7 @@ class GGML(LLM): async def complete(self, prompt: str, with_history: List[ChatMessage] = [], **kwargs) -> Coroutine[Any, Any, str]: args = {**self.default_args, **kwargs} - async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl_context=ssl_context)) as session: + async with aiohttp.ClientSession() as session: async with session.post(f"{SERVER_URL}/v1/completions", json={ "messages": compile_chat_messages(args["model"], with_history, args["max_tokens"], prompt, functions=None), **args diff --git a/continuedev/src/continuedev/steps/core/core.py b/continuedev/src/continuedev/steps/core/core.py index 2c9d8c01..d5a7cd9a 100644 --- a/continuedev/src/continuedev/steps/core/core.py +++ b/continuedev/src/continuedev/steps/core/core.py @@ -192,7 +192,8 @@ class DefaultModelEditCodeStep(Step): # We care because if this prompt itself goes over the limit, then the entire message will have to be cut from the completion. # Overflow won't happen, but prune_chat_messages in count_tokens.py will cut out this whole thing, instead of us cutting out only as many lines as we need. model_to_use = sdk.models.default - max_tokens = DEFAULT_MAX_TOKENS + max_tokens = MAX_TOKENS_FOR_MODEL.get( + model_to_use.name, DEFAULT_MAX_TOKENS) / 2 TOKENS_TO_BE_CONSIDERED_LARGE_RANGE = 1200 if model_to_use.count_tokens(rif.contents) > TOKENS_TO_BE_CONSIDERED_LARGE_RANGE: @@ -498,7 +499,7 @@ Please output the code to be inserted at the cursor in order to fulfill the user if isinstance(model_to_use, GGML): messages = [ChatMessage( - role="user", content=f"```\n{rif.contents}\n```\n{self.user_input}\n```\n", summary=self.user_input)] + role="user", content=f"```\n{rif.contents}\n```\n\nUser request: \"{self.user_input}\"\n\nThis is the code after changing to perfectly comply with the user request. It does not include any placeholder code, only real implementations:\n\n```\n", summary=self.user_input)] generator = model_to_use.stream_chat( messages, temperature=0, max_tokens=max_tokens) |