summaryrefslogtreecommitdiff
path: root/server/continuedev/libs/llm/ggml.py
diff options
context:
space:
mode:
Diffstat (limited to 'server/continuedev/libs/llm/ggml.py')
-rw-r--r--server/continuedev/libs/llm/ggml.py226
1 files changed, 226 insertions, 0 deletions
diff --git a/server/continuedev/libs/llm/ggml.py b/server/continuedev/libs/llm/ggml.py
new file mode 100644
index 00000000..55d580a8
--- /dev/null
+++ b/server/continuedev/libs/llm/ggml.py
@@ -0,0 +1,226 @@
+import json
+from typing import Any, Callable, Coroutine, Dict, List, Literal, Optional
+
+from pydantic import Field
+
+from ...core.main import ChatMessage
+from ..util.logging import logger
+from .base import LLM, CompletionOptions
+from .openai import CHAT_MODELS
+from .prompts.chat import llama2_template_messages
+from .prompts.edit import simplified_edit_prompt
+
+
+class GGML(LLM):
+ """
+ See our [5 minute quickstart](https://github.com/continuedev/ggml-server-example) to run any model locally with ggml. While these models don't yet perform as well, they are free, entirely private, and run offline.
+
+ Once the model is running on localhost:8000, change `~/.continue/config.py` to look like this:
+
+ ```python title="~/.continue/config.py"
+ from continuedev.libs.llm.ggml import GGML
+
+ config = ContinueConfig(
+ ...
+ models=Models(
+ default=GGML(
+ max_context_length=2048,
+ server_url="http://localhost:8000")
+ )
+ )
+ ```
+ """
+
+ server_url: str = Field(
+ "http://localhost:8000",
+ description="URL of the OpenAI-compatible server where the model is being served",
+ )
+ model: str = Field(
+ "ggml", description="The name of the model to use (optional for the GGML class)"
+ )
+
+ api_base: Optional[str] = Field(None, description="OpenAI API base URL.")
+
+ api_type: Optional[Literal["azure", "openai"]] = Field(
+ None, description="OpenAI API type."
+ )
+
+ api_version: Optional[str] = Field(
+ None, description="OpenAI API version. For use with Azure OpenAI Service."
+ )
+
+ engine: Optional[str] = Field(
+ None, description="OpenAI engine. For use with Azure OpenAI Service."
+ )
+
+ template_messages: Optional[
+ Callable[[List[Dict[str, str]]], str]
+ ] = llama2_template_messages
+
+ prompt_templates = {
+ "edit": simplified_edit_prompt,
+ }
+
+ class Config:
+ arbitrary_types_allowed = True
+
+ def get_headers(self):
+ headers = {
+ "Content-Type": "application/json",
+ }
+ if self.api_key is not None:
+ if self.api_type == "azure":
+ headers["api-key"] = self.api_key
+ else:
+ headers["Authorization"] = f"Bearer {self.api_key}"
+
+ return headers
+
+ def get_full_server_url(self, endpoint: str):
+ endpoint = endpoint.lstrip("/").rstrip("/")
+
+ if self.api_type == "azure":
+ if self.engine is None or self.api_version is None or self.api_base is None:
+ raise Exception(
+ "For Azure OpenAI Service, you must specify engine, api_version, and api_base."
+ )
+
+ return f"{self.api_base}/openai/deployments/{self.engine}/{endpoint}?api-version={self.api_version}"
+ else:
+ return f"{self.server_url}/v1/{endpoint}"
+
+ async def _raw_stream_complete(self, prompt, options):
+ args = self.collect_args(options)
+
+ async with self.create_client_session() as client_session:
+ async with client_session.post(
+ self.get_full_server_url(endpoint="completions"),
+ json={
+ "prompt": prompt,
+ "stream": True,
+ **args,
+ },
+ headers=self.get_headers(),
+ proxy=self.proxy,
+ ) as resp:
+ if resp.status != 200:
+ raise Exception(
+ f"Error calling /chat/completions endpoint: {resp.status}"
+ )
+
+ async for line in resp.content.iter_any():
+ if line:
+ chunks = line.decode("utf-8")
+ for chunk in chunks.split("\n"):
+ if (
+ chunk.startswith(": ping - ")
+ or chunk.startswith("data: [DONE]")
+ or chunk.strip() == ""
+ ):
+ continue
+ elif chunk.startswith("data: "):
+ chunk = chunk[6:]
+ try:
+ j = json.loads(chunk)
+ except Exception:
+ continue
+ if (
+ "choices" in j
+ and len(j["choices"]) > 0
+ and "text" in j["choices"][0]
+ ):
+ yield j["choices"][0]["text"]
+
+ async def _stream_chat(self, messages: List[ChatMessage], options):
+ args = self.collect_args(options)
+
+ async def generator():
+ async with self.create_client_session() as client_session:
+ async with client_session.post(
+ self.get_full_server_url(endpoint="chat/completions"),
+ json={"messages": messages, "stream": True, **args},
+ headers=self.get_headers(),
+ proxy=self.proxy,
+ ) as resp:
+ if resp.status != 200:
+ raise Exception(
+ f"Error calling /chat/completions endpoint: {resp.status}"
+ )
+
+ async for line, end in resp.content.iter_chunks():
+ json_chunk = line.decode("utf-8")
+ chunks = json_chunk.split("\n")
+ for chunk in chunks:
+ if (
+ chunk.strip() == ""
+ or json_chunk.startswith(": ping - ")
+ or json_chunk.startswith("data: [DONE]")
+ ):
+ continue
+ try:
+ yield json.loads(chunk[6:])["choices"][0]["delta"]
+ except:
+ pass
+
+ # Because quite often the first attempt fails, and it works thereafter
+ try:
+ async for chunk in generator():
+ yield chunk
+ except Exception as e:
+ logger.warning(f"Error calling /chat/completions endpoint: {e}")
+ async for chunk in generator():
+ yield chunk
+
+ async def _raw_complete(self, prompt: str, options) -> Coroutine[Any, Any, str]:
+ args = self.collect_args(options)
+
+ async with self.create_client_session() as client_session:
+ async with client_session.post(
+ self.get_full_server_url(endpoint="completions"),
+ json={
+ "prompt": prompt,
+ **args,
+ },
+ headers=self.get_headers(),
+ proxy=self.proxy,
+ ) as resp:
+ if resp.status != 200:
+ raise Exception(
+ f"Error calling /chat/completions endpoint: {resp.status}"
+ )
+
+ text = await resp.text()
+ try:
+ completion = json.loads(text)["choices"][0]["text"]
+ return completion
+ except Exception as e:
+ raise Exception(
+ f"Error calling /completion endpoint: {e}\n\nResponse text: {text}"
+ )
+
+ async def _complete(self, prompt: str, options: CompletionOptions):
+ completion = ""
+ if self.model in CHAT_MODELS:
+ async for chunk in self._stream_chat(
+ [{"role": "user", "content": prompt}], options
+ ):
+ if "content" in chunk:
+ completion += chunk["content"]
+
+ else:
+ async for chunk in self._raw_stream_complete(prompt, options):
+ completion += chunk
+
+ return completion
+
+ async def _stream_complete(self, prompt, options: CompletionOptions):
+ if self.model in CHAT_MODELS:
+ async for chunk in self._stream_chat(
+ [{"role": "user", "content": prompt}], options
+ ):
+ if "content" in chunk:
+ yield chunk["content"]
+
+ else:
+ async for chunk in self._raw_stream_complete(prompt, options):
+ yield chunk