diff options
Diffstat (limited to 'server/continuedev/libs/llm/hf_inference_api.py')
-rw-r--r-- | server/continuedev/libs/llm/hf_inference_api.py | 78 |
1 files changed, 78 insertions, 0 deletions
diff --git a/server/continuedev/libs/llm/hf_inference_api.py b/server/continuedev/libs/llm/hf_inference_api.py new file mode 100644 index 00000000..990ec7c8 --- /dev/null +++ b/server/continuedev/libs/llm/hf_inference_api.py @@ -0,0 +1,78 @@ +from typing import Callable, Dict, List, Union + +from huggingface_hub import InferenceClient +from pydantic import Field + +from .base import LLM, CompletionOptions +from .prompts.chat import llama2_template_messages +from .prompts.edit import simplified_edit_prompt + + +class HuggingFaceInferenceAPI(LLM): + """ + Hugging Face Inference API is a great option for newly released language models. Sign up for an account and add billing [here](https://huggingface.co/settings/billing), access the Inference Endpoints [here](https://ui.endpoints.huggingface.co), click on “New endpoint”, and fill out the form (e.g. select a model like [WizardCoder-Python-34B-V1.0](https://huggingface.co/WizardLM/WizardCoder-Python-34B-V1.0)), and then deploy your model by clicking “Create Endpoint”. Change `~/.continue/config.py` to look like this: + + ```python title="~/.continue/config.py" + from continuedev.core.models import Models + from continuedev.libs.llm.hf_inference_api import HuggingFaceInferenceAPI + + config = ContinueConfig( + ... + models=Models( + default=HuggingFaceInferenceAPI( + endpoint_url="<INFERENCE_API_ENDPOINT_URL>", + hf_token="<HUGGING_FACE_TOKEN>", + ) + ) + ``` + """ + + model: str = Field( + "Hugging Face Inference API", + description="The name of the model to use (optional for the HuggingFaceInferenceAPI class)", + ) + hf_token: str = Field(..., description="Your Hugging Face API token") + endpoint_url: str = Field( + None, description="Your Hugging Face Inference API endpoint URL" + ) + + template_messages: Union[ + Callable[[List[Dict[str, str]]], str], None + ] = llama2_template_messages + + prompt_templates = { + "edit": simplified_edit_prompt, + } + + class Config: + arbitrary_types_allowed = True + + def collect_args(self, options: CompletionOptions): + options.stop = None + args = super().collect_args(options) + + if "max_tokens" in args: + args["max_new_tokens"] = args["max_tokens"] + del args["max_tokens"] + if "stop" in args: + args["stop_sequences"] = args["stop"] + del args["stop"] + + return args + + async def _stream_complete(self, prompt, options): + args = self.collect_args(options) + + client = InferenceClient(self.endpoint_url, token=self.hf_token) + + stream = client.text_generation(prompt, stream=True, details=True, **args) + + for r in stream: + # skip special tokens + if r.token.special: + continue + # stop if we encounter a stop sequence + if options.stop is not None: + if r.token.text in options.stop: + break + yield r.token.text |