diff options
Diffstat (limited to 'server/continuedev/libs/llm/openai.py')
-rw-r--r-- | server/continuedev/libs/llm/openai.py | 156 |
1 files changed, 156 insertions, 0 deletions
diff --git a/server/continuedev/libs/llm/openai.py b/server/continuedev/libs/llm/openai.py new file mode 100644 index 00000000..ba29279b --- /dev/null +++ b/server/continuedev/libs/llm/openai.py @@ -0,0 +1,156 @@ +from typing import Callable, List, Literal, Optional + +import certifi +import openai +from pydantic import Field + +from ...core.main import ChatMessage +from .base import LLM + +CHAT_MODELS = { + "gpt-3.5-turbo", + "gpt-3.5-turbo-16k", + "gpt-4", + "gpt-3.5-turbo-0613", + "gpt-4-32k", +} +MAX_TOKENS_FOR_MODEL = { + "gpt-3.5-turbo": 4096, + "gpt-3.5-turbo-0613": 4096, + "gpt-3.5-turbo-16k": 16_384, + "gpt-4": 8192, + "gpt-35-turbo-16k": 16_384, + "gpt-35-turbo-0613": 4096, + "gpt-35-turbo": 4096, + "gpt-4-32k": 32_768, +} + + +class OpenAI(LLM): + """ + The OpenAI class can be used to access OpenAI models like gpt-4 and gpt-3.5-turbo. + + If you are locally serving a model that uses an OpenAI-compatible server, you can simply change the `api_base` in the `OpenAI` class like this: + + ```python title="~/.continue/config.py" + from continuedev.libs.llm.openai import OpenAI + + config = ContinueConfig( + ... + models=Models( + default=OpenAI( + api_key="EMPTY", + model="<MODEL_NAME>", + api_base="http://localhost:8000", # change to your server + ) + ) + ) + ``` + + Options for serving models locally with an OpenAI-compatible server include: + + - [text-gen-webui](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai#setup--installation) + - [FastChat](https://github.com/lm-sys/FastChat/blob/main/docs/openai_api.md) + - [LocalAI](https://localai.io/basics/getting_started/) + - [llama-cpp-python](https://github.com/abetlen/llama-cpp-python#web-server) + """ + + api_key: str = Field( + ..., + description="OpenAI API key", + ) + + proxy: Optional[str] = Field(None, description="Proxy URL to use for requests.") + + api_base: Optional[str] = Field(None, description="OpenAI API base URL.") + + api_type: Optional[Literal["azure", "openai"]] = Field( + None, description="OpenAI API type." + ) + + api_version: Optional[str] = Field( + None, description="OpenAI API version. For use with Azure OpenAI Service." + ) + + engine: Optional[str] = Field( + None, description="OpenAI engine. For use with Azure OpenAI Service." + ) + + async def start( + self, unique_id: Optional[str] = None, write_log: Callable[[str], None] = None + ): + await super().start(write_log=write_log, unique_id=unique_id) + + if self.context_length is None: + self.context_length = MAX_TOKENS_FOR_MODEL.get(self.model, 4096) + + openai.api_key = self.api_key + if self.api_type is not None: + openai.api_type = self.api_type + if self.api_base is not None: + openai.api_base = self.api_base + if self.api_version is not None: + openai.api_version = self.api_version + + if self.verify_ssl is not None and self.verify_ssl is False: + openai.verify_ssl_certs = False + + if self.proxy is not None: + openai.proxy = self.proxy + + openai.ca_bundle_path = self.ca_bundle_path or certifi.where() + + def collect_args(self, options): + args = super().collect_args(options) + if self.engine is not None: + args["engine"] = self.engine + + if not args["model"].endswith("0613") and "functions" in args: + del args["functions"] + + return args + + async def _stream_complete(self, prompt, options): + args = self.collect_args(options) + args["stream"] = True + + if args["model"] in CHAT_MODELS: + async for chunk in await openai.ChatCompletion.acreate( + messages=[{"role": "user", "content": prompt}], + **args, + headers=self.headers, + ): + if len(chunk.choices) > 0 and "content" in chunk.choices[0].delta: + yield chunk.choices[0].delta.content + else: + async for chunk in await openai.Completion.acreate(prompt=prompt, **args, headers=self.headers): + if len(chunk.choices) > 0: + yield chunk.choices[0].text + + async def _stream_chat(self, messages: List[ChatMessage], options): + args = self.collect_args(options) + + async for chunk in await openai.ChatCompletion.acreate( + messages=messages, + stream=True, + **args, + headers=self.headers, + ): + if not hasattr(chunk, "choices") or len(chunk.choices) == 0: + continue + yield chunk.choices[0].delta + + async def _complete(self, prompt: str, options): + args = self.collect_args(options) + + if args["model"] in CHAT_MODELS: + resp = await openai.ChatCompletion.acreate( + messages=[{"role": "user", "content": prompt}], + **args, + headers=self.headers, + ) + return resp.choices[0].message.content + else: + return ( + (await openai.Completion.acreate(prompt=prompt, **args, headers=self.headers)).choices[0].text + ) |