diff options
Diffstat (limited to 'server/continuedev/libs/llm/replicate.py')
-rw-r--r-- | server/continuedev/libs/llm/replicate.py | 78 |
1 files changed, 78 insertions, 0 deletions
diff --git a/server/continuedev/libs/llm/replicate.py b/server/continuedev/libs/llm/replicate.py new file mode 100644 index 00000000..3423193b --- /dev/null +++ b/server/continuedev/libs/llm/replicate.py @@ -0,0 +1,78 @@ +import concurrent.futures +from typing import List + +import replicate +from pydantic import Field + +from ...core.main import ChatMessage +from .base import LLM +from .prompts.edit import simplified_edit_prompt + + +class ReplicateLLM(LLM): + """ + Replicate is a great option for newly released language models or models that you've deployed through their platform. Sign up for an account [here](https://replicate.ai/), copy your API key, and then select any model from the [Replicate Streaming List](https://replicate.com/collections/streaming-language-models). Change `~/.continue/config.py` to look like this: + + ```python title="~/.continue/config.py" + from continuedev.core.models import Models + from continuedev.libs.llm.replicate import ReplicateLLM + + config = ContinueConfig( + ... + models=Models( + default=ReplicateLLM( + model="replicate/codellama-13b-instruct:da5676342de1a5a335b848383af297f592b816b950a43d251a0a9edd0113604b", + api_key="my-replicate-api-key") + ) + ) + ``` + + If you don't specify the `model` parameter, it will default to `replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781`. + """ + + api_key: str = Field(..., description="Replicate API key") + + model: str = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781" + + _client: replicate.Client = None + + prompt_templates = { + "edit": simplified_edit_prompt, + } + + async def start(self, **kwargs): + await super().start(**kwargs) + self._client = replicate.Client(api_token=self.api_key) + + async def _complete(self, prompt: str, options): + def helper(): + output = self._client.run( + self.model, input={"message": prompt, "prompt": prompt} + ) + completion = "" + for item in output: + completion += item + + return completion + + with concurrent.futures.ThreadPoolExecutor() as executor: + future = executor.submit(helper) + completion = future.result() + + return completion + + async def _stream_complete(self, prompt, options): + for item in self._client.run( + self.model, input={"message": prompt, "prompt": prompt} + ): + yield item + + async def _stream_chat(self, messages: List[ChatMessage], options): + for item in self._client.run( + self.model, + input={ + "message": messages[-1]["content"], + "prompt": messages[-1]["content"], + }, + ): + yield {"content": item, "role": "assistant"} |