summaryrefslogtreecommitdiff
path: root/server/continuedev/plugins/recipes/AddTransformRecipe/steps.py
diff options
context:
space:
mode:
Diffstat (limited to 'server/continuedev/plugins/recipes/AddTransformRecipe/steps.py')
-rw-r--r--server/continuedev/plugins/recipes/AddTransformRecipe/steps.py106
1 files changed, 106 insertions, 0 deletions
diff --git a/server/continuedev/plugins/recipes/AddTransformRecipe/steps.py b/server/continuedev/plugins/recipes/AddTransformRecipe/steps.py
new file mode 100644
index 00000000..61638374
--- /dev/null
+++ b/server/continuedev/plugins/recipes/AddTransformRecipe/steps.py
@@ -0,0 +1,106 @@
+import os
+from textwrap import dedent
+
+from ....core.main import Step
+from ....core.sdk import ContinueSDK, Models
+from ....core.steps import MessageStep
+from ....libs.util.paths import find_data_file
+
+AI_ASSISTED_STRING = "(✨ AI-Assisted ✨)"
+
+
+class SetUpChessPipelineStep(Step):
+ hide: bool = True
+ name: str = "Setup Chess.com API dlt Pipeline"
+
+ async def describe(self, models: Models):
+ return "This step will create a new dlt pipeline that loads data from the chess.com API."
+
+ async def run(self, sdk: ContinueSDK):
+ # running commands to get started when creating a new dlt pipeline
+ await sdk.run(
+ [
+ "python3 -m venv .env",
+ "source .env/bin/activate",
+ "pip install dlt",
+ "dlt --non-interactive init chess duckdb",
+ "pip install -r requirements.txt",
+ "pip install pandas streamlit", # Needed for the pipeline show step later
+ ],
+ name="Set up Python environment",
+ description=dedent(
+ """\
+ - Create a Python virtual environment: `python3 -m venv .env`
+ - Activate the virtual environment: `source .env/bin/activate`
+ - Install dlt: `pip install dlt`
+ - Create a new dlt pipeline called "chess" that loads data into a local DuckDB instance: `dlt init chess duckdb`
+ - Install the Python dependencies for the pipeline: `pip install -r requirements.txt`"""
+ ),
+ )
+
+
+class AddTransformStep(Step):
+ hide: bool = True
+
+ # e.g. "Use the `python-chess` library to decode the moves in the game data"
+ transform_description: str
+
+ async def run(self, sdk: ContinueSDK):
+ source_name = "chess"
+ filename = f"{source_name}_pipeline.py"
+ abs_filepath = os.path.join(sdk.ide.workspace_directory, filename)
+
+ # Open the file and highlight the function to be edited
+ await sdk.ide.setFileOpen(abs_filepath)
+
+ await sdk.run_step(
+ MessageStep(
+ message=dedent(
+ """\
+ This step will customize your resource function with a transform of your choice:
+ - Add a filter or map transformation depending on your request
+ - Load the data into a local DuckDB instance
+ - Open up a Streamlit app for you to view the data"""
+ ),
+ name="Write transformation function",
+ )
+ )
+
+ with open(find_data_file("dlt_transform_docs.md")) as f:
+ dlt_transform_docs = f.read()
+
+ prompt = dedent(
+ f"""\
+ Task: Write a transform function using the description below and then use `add_map` or `add_filter` from the `dlt` library to attach it a resource.
+
+ Description: {self.transform_description}
+
+ Here are some docs pages that will help you better understand how to use `dlt`.
+
+ {dlt_transform_docs}"""
+ )
+
+ # edit the pipeline to add a transform function and attach it to a resource
+ await sdk.edit_file(
+ filename=filename,
+ prompt=prompt,
+ name=f"Writing transform function {AI_ASSISTED_STRING}",
+ )
+
+ await sdk.wait_for_user_confirmation(
+ "Press Continue to confirm that the changes are okay before we run the pipeline."
+ )
+
+ # run the pipeline and load the data
+ await sdk.run(
+ f"python3 {filename}",
+ name="Run the pipeline",
+ description=f"Running `python3 {filename}` to load the data into a local DuckDB instance",
+ )
+
+ # run a streamlit app to show the data
+ await sdk.run(
+ f"dlt pipeline {source_name}_pipeline show",
+ name="Show data in a Streamlit app",
+ description=f"Running `dlt pipeline {source_name} show` to show the data in a Streamlit app, where you can view and play with the data.",
+ )