1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
import _ from "lodash";
function updatedObj(old: any, pathToValue: { [key: string]: any }) {
const newObject = _.cloneDeep(old);
for (const key in pathToValue) {
if (typeof pathToValue[key] === "function") {
_.updateWith(newObject, key, pathToValue[key]);
} else {
_.updateWith(newObject, key, (__) => pathToValue[key]);
}
}
return newObject;
}
export enum ModelProviderTag {
"Requires API Key" = "Requires API Key",
"Local" = "Local",
"Free" = "Free",
"Open-Source" = "Open-Source",
}
export const MODEL_PROVIDER_TAG_COLORS: any = {};
MODEL_PROVIDER_TAG_COLORS[ModelProviderTag["Requires API Key"]] = "#FF0000";
MODEL_PROVIDER_TAG_COLORS[ModelProviderTag["Local"]] = "#00bb00";
MODEL_PROVIDER_TAG_COLORS[ModelProviderTag["Open-Source"]] = "#0033FF";
MODEL_PROVIDER_TAG_COLORS[ModelProviderTag["Free"]] = "#ffff00";
export enum CollectInputType {
"text" = "text",
"number" = "number",
"range" = "range",
}
export interface InputDescriptor {
inputType: CollectInputType;
key: string;
label: string;
placeholder?: string;
defaultValue?: string | number;
min?: number;
max?: number;
step?: number;
options?: string[];
required?: boolean;
description?: string;
[key: string]: any;
}
const contextLengthInput: InputDescriptor = {
inputType: CollectInputType.number,
key: "context_length",
label: "Context Length",
defaultValue: 2048,
required: false,
};
const temperatureInput: InputDescriptor = {
inputType: CollectInputType.number,
key: "temperature",
label: "Temperature",
defaultValue: undefined,
required: false,
min: 0.0,
max: 1.0,
step: 0.01,
};
const topPInput: InputDescriptor = {
inputType: CollectInputType.number,
key: "top_p",
label: "Top-P",
defaultValue: undefined,
required: false,
min: 0,
max: 1,
step: 0.01,
};
const topKInput: InputDescriptor = {
inputType: CollectInputType.number,
key: "top_k",
label: "Top-K",
defaultValue: undefined,
required: false,
min: 0,
max: 1,
step: 0.01,
};
const presencePenaltyInput: InputDescriptor = {
inputType: CollectInputType.number,
key: "presence_penalty",
label: "Presence Penalty",
defaultValue: undefined,
required: false,
min: 0,
max: 1,
step: 0.01,
};
const FrequencyPenaltyInput: InputDescriptor = {
inputType: CollectInputType.number,
key: "frequency_penalty",
label: "Frequency Penalty",
defaultValue: undefined,
required: false,
min: 0,
max: 1,
step: 0.01,
};
const completionParamsInputs = [
contextLengthInput,
temperatureInput,
topKInput,
topPInput,
presencePenaltyInput,
FrequencyPenaltyInput,
];
const serverUrlInput = {
inputType: CollectInputType.text,
key: "server_url",
label: "Server URL",
placeholder: "e.g. http://localhost:8080",
required: false,
};
export interface ModelInfo {
title: string;
class: string;
description: string;
longDescription?: string;
icon?: string;
tags?: ModelProviderTag[];
packages: ModelPackage[];
params?: any;
collectInputFor?: InputDescriptor[];
}
// A dimension is like parameter count - 7b, 13b, 34b, etc.
// You would set options to the field that should be changed for that option in the params field of ModelPackage
export interface PackageDimension {
name: string;
description: string;
options: { [key: string]: { [key: string]: any } };
}
export interface ModelPackage {
collectInputFor?: InputDescriptor[];
description: string;
title: string;
refUrl?: string;
tags?: ModelProviderTag[];
icon?: string;
params: {
model: string;
template_messages?: string;
context_length: number;
stop_tokens?: string[];
prompt_templates?: any;
replace?: [string, string][];
[key: string]: any;
};
dimensions?: PackageDimension[];
}
enum ChatTemplates {
"alpaca" = "template_alpaca_messages",
"llama2" = "llama2_template_messages",
"sqlcoder" = "sqlcoder_template_messages",
}
const codeLlamaInstruct: ModelPackage = {
title: "CodeLlama Instruct",
description:
"A model from Meta, fine-tuned for code generation and conversation",
refUrl: "",
params: {
title: "CodeLlama-7b-Instruct",
model: "codellama:7b-instruct",
context_length: 2048,
template_messages: ChatTemplates.llama2,
},
icon: "meta.svg",
dimensions: [
{
name: "Parameter Count",
description: "The number of parameters in the model",
options: {
"7b": {
model: "codellama:7b-instruct",
title: "CodeLlama-7b-Instruct",
},
"13b": {
model: "codellama:13b-instruct",
title: "CodeLlama-13b-Instruct",
},
"34b": {
model: "codellama:34b-instruct",
title: "CodeLlama-34b-Instruct",
},
},
},
],
};
const llama2Chat: ModelPackage = {
title: "Llama2 Chat",
description: "The latest Llama model from Meta, fine-tuned for chat",
refUrl: "",
params: {
title: "Llama2-7b-Chat",
model: "llama2:7b-chat",
context_length: 2048,
template_messages: ChatTemplates.llama2,
},
icon: "meta.svg",
dimensions: [
{
name: "Parameter Count",
description: "The number of parameters in the model",
options: {
"7b": {
model: "llama2:7b-chat",
title: "Llama2-7b-Chat",
},
"13b": {
model: "llama2:13b-chat",
title: "Llama2-13b-Chat",
},
"34b": {
model: "llama2:34b-chat",
title: "Llama2-34b-Chat",
},
},
},
],
};
const wizardCoder: ModelPackage = {
title: "WizardCoder",
description:
"A CodeLlama-based code generation model from WizardLM, focused on Python",
refUrl: "",
params: {
title: "WizardCoder-7b-Python",
model: "wizardcoder:7b-python",
context_length: 2048,
template_messages: ChatTemplates.alpaca,
},
icon: "wizardlm.png",
dimensions: [
{
name: "Parameter Count",
description: "The number of parameters in the model",
options: {
"7b": {
model: "wizardcoder:7b-python",
title: "WizardCoder-7b-Python",
},
"13b": {
model: "wizardcoder:13b-python",
title: "WizardCoder-13b-Python",
},
"34b": {
model: "wizardcoder:34b-python",
title: "WizardCoder-34b-Python",
},
},
},
],
};
const phindCodeLlama: ModelPackage = {
title: "Phind CodeLlama (34b)",
description: "A finetune of CodeLlama by Phind",
params: {
title: "Phind CodeLlama",
model: "phind-codellama",
context_length: 2048,
template_messages: ChatTemplates.llama2,
},
};
const mistral: ModelPackage = {
title: "Mistral (7b)",
description:
"A 7b parameter base model created by Mistral AI, very competent for code generation and other tasks",
params: {
title: "Mistral",
model: "mistral",
context_length: 2048,
template_messages: ChatTemplates.llama2,
},
icon: "mistral.png",
};
const sqlCoder: ModelPackage = {
title: "SQLCoder",
description:
"A finetune of StarCoder by Defog.ai, focused specifically on SQL",
params: {
title: "SQLCoder",
model: "sqlcoder",
context_length: 2048,
template_messages: ChatTemplates.sqlcoder,
},
dimensions: [
{
name: "Parameter Count",
description: "The number of parameters in the model",
options: {
"7b": {
model: "sqlcoder:7b",
title: "SQLCoder-7b",
},
"13b": {
model: "sqlcoder:15b",
title: "SQLCoder-15b",
},
},
},
],
};
const codeup: ModelPackage = {
title: "CodeUp (13b)",
description: "An open-source coding model based on Llama2",
params: {
title: "CodeUp",
model: "codeup",
context_length: 2048,
template_messages: ChatTemplates.llama2,
},
};
const osModels = [
codeLlamaInstruct,
llama2Chat,
wizardCoder,
phindCodeLlama,
sqlCoder,
mistral,
codeup,
];
export const MODEL_INFO: { [key: string]: ModelInfo } = {
ollama: {
title: "Ollama",
class: "Ollama",
description:
"One of the fastest ways to get started with local models on Mac or Linux",
longDescription:
'To get started with Ollama, follow these steps:\n1. Download from [ollama.ai](https://ollama.ai/) and open the application\n2. Open a terminal and run `ollama pull <MODEL_NAME>`. Example model names are `codellama:7b-instruct` or `llama2:7b-text`. You can find the full list [here](https://ollama.ai/library).\n3. Make sure that the model name used in step 2 is the same as the one in config.py (e.g. `model="codellama:7b-instruct"`)\n4. Once the model has finished downloading, you can start asking questions through Continue.',
icon: "ollama.png",
tags: [ModelProviderTag["Local"], ModelProviderTag["Open-Source"]],
packages: osModels,
collectInputFor: [...completionParamsInputs],
},
llamacpp: {
title: "llama.cpp",
class: "LlamaCpp",
description: "If you are running the llama.cpp server from source",
longDescription: `llama.cpp comes with a [built-in server](https://github.com/ggerganov/llama.cpp/tree/master/examples/server#llamacppexampleserver) that can be run from source. To do this:
1. Clone the repository with \`git clone https://github.com/ggerganov/llama.cpp\`.
2. \`cd llama.cpp\`
3. Download the model you'd like to use and place it in the \`llama.cpp/models\` directory (the best place to find models is [The Bloke on HuggingFace](https://huggingface.co/TheBloke))
4. Run the llama.cpp server with the command below (replacing with the model you downloaded):
\`\`\`shell
.\\server.exe -c 4096 --host 0.0.0.0 -t 16 --mlock -m models/codellama-7b-instruct.Q8_0.gguf
\`\`\`
After it's up and running, you can start using Continue.`,
icon: "llamacpp.png",
tags: [ModelProviderTag.Local, ModelProviderTag["Open-Source"]],
packages: osModels,
collectInputFor: [...completionParamsInputs],
}
};
|