1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
export enum ModelProviderTag {
"Requires API Key" = "Requires API Key",
"Local" = "Local",
"Free" = "Free",
"Open-Source" = "Open-Source",
}
export const MODEL_PROVIDER_TAG_COLORS: any = {};
MODEL_PROVIDER_TAG_COLORS[ModelProviderTag["Requires API Key"]] = "#FF0000";
MODEL_PROVIDER_TAG_COLORS[ModelProviderTag["Local"]] = "#00bb00";
MODEL_PROVIDER_TAG_COLORS[ModelProviderTag["Open-Source"]] = "#0033FF";
MODEL_PROVIDER_TAG_COLORS[ModelProviderTag["Free"]] = "#ffff00";
export enum CollectInputType {
"text" = "text",
"number" = "number",
}
export interface InputDescriptor {
inputType: CollectInputType;
key: string;
label: string;
placeholder?: string;
defaultValue?: string | number;
min?: number;
max?: number;
step?: number;
options?: string[];
required?: boolean;
description?: string;
[key: string]: any;
}
const contextLengthInput: InputDescriptor = {
inputType: CollectInputType.number,
key: "context_length",
label: "Context Length",
defaultValue: 2048,
required: false,
};
const serverUrlInput = {
inputType: CollectInputType.text,
key: "server_url",
label: "Server URL",
placeholder: "e.g. http://localhost:8080",
required: false,
};
export interface ModelInfo {
title: string;
class: string;
description: string;
longDescription?: string;
icon?: string;
tags?: ModelProviderTag[];
packages: ModelPackage[];
params?: any;
collectInputFor?: InputDescriptor[];
}
export interface ModelPackage {
collectInputFor?: InputDescriptor[];
description: string;
title: string;
refUrl?: string;
tags?: ModelProviderTag[];
icon?: string;
params: {
model: string;
template_messages?: string;
context_length: number;
stop_tokens?: string[];
prompt_templates?: any;
replace?: [string, string][];
[key: string]: any;
};
}
const codeLlama7bInstruct: ModelPackage = {
title: "CodeLlama-7b-Instruct",
description: "A 7b parameter model tuned for code generation",
refUrl: "",
params: {
title: "CodeLlama-7b-Instruct",
model: "codellama:7b-instruct",
context_length: 2048,
template_messages: "llama2_template_messages",
},
icon: "meta.svg",
};
const codeLlama13bInstruct: ModelPackage = {
title: "CodeLlama-13b-Instruct",
description: "A 13b parameter model tuned for code generation",
refUrl: "",
params: {
title: "CodeLlama13b-Instruct",
model: "codellama13b-instruct",
context_length: 2048,
template_messages: "llama2_template_messages",
},
icon: "meta.svg",
};
const codeLlama34bInstruct: ModelPackage = {
title: "CodeLlama-34b-Instruct",
description: "A 34b parameter model tuned for code generation",
refUrl: "",
params: {
title: "CodeLlama-34b-Instruct",
model: "codellama:34b-instruct",
context_length: 2048,
template_messages: "llama2_template_messages",
},
icon: "meta.svg",
};
const llama2Chat7b: ModelPackage = {
title: "Llama2-7b-Chat",
description: "A 7b parameter model fine-tuned for chat",
refUrl: "",
params: {
title: "Llama2-7b-Chat",
model: "llama2:7b-chat",
context_length: 2048,
template_messages: "llama2_template_messages",
},
icon: "meta.svg",
};
const llama2Chat13b: ModelPackage = {
title: "Llama2-13b-Chat",
description: "A 13b parameter model fine-tuned for chat",
refUrl: "",
params: {
title: "Llama2-13b-Chat",
model: "llama2:13b-chat",
context_length: 2048,
template_messages: "llama2_template_messages",
},
icon: "meta.svg",
};
const llama2Chat34b: ModelPackage = {
title: "Llama2-34b-Chat",
description: "A 34b parameter model fine-tuned for chat",
refUrl: "",
params: {
title: "Llama2-34b-Chat",
model: "llama2:34b-chat",
context_length: 2048,
template_messages: "llama2_template_messages",
},
icon: "meta.svg",
};
const codeLlamaPackages = [
codeLlama7bInstruct,
codeLlama13bInstruct,
codeLlama34bInstruct,
];
const llama2Packages = [llama2Chat7b, llama2Chat13b, llama2Chat34b];
const llama2FamilyPackage = {
title: "Llama2 or CodeLlama",
description: "Any model using the Llama2 or CodeLlama chat template",
params: {
model: "llama2",
context_length: 2048,
template_messages: "llama2_template_messages",
},
icon: "meta.svg",
};
const gpt4: ModelPackage = {
title: "GPT-4",
description: "The latest model from OpenAI",
params: {
model: "gpt-4",
context_length: 8096,
api_key: "",
title: "GPT-4",
},
};
const gpt35turbo: ModelPackage = {
title: "GPT-3.5-Turbo",
description:
"A faster, cheaper OpenAI model with slightly lower capabilities",
params: {
model: "gpt-3.5-turbo",
context_length: 8096,
title: "GPT-3.5-Turbo",
api_key: "",
},
};
export const MODEL_INFO: { [key: string]: ModelInfo } = {
openai: {
title: "OpenAI",
class: "OpenAI",
description: "Use gpt-4, gpt-3.5-turbo, or any other OpenAI model",
longDescription:
"Use gpt-4, gpt-3.5-turbo, or any other OpenAI model. See [here](https://openai.com/product#made-for-developers) to obtain an API key.",
icon: "openai.svg",
tags: [ModelProviderTag["Requires API Key"]],
packages: [gpt4, gpt35turbo],
collectInputFor: [
{
inputType: CollectInputType.text,
key: "api_key",
label: "API Key",
placeholder: "Enter your OpenAI API key",
required: true,
},
],
},
anthropic: {
title: "Anthropic",
class: "AnthropicLLM",
description:
"Claude-2 is a highly capable model with a 100k context length",
icon: "anthropic.png",
tags: [ModelProviderTag["Requires API Key"]],
longDescription:
"To get started with Anthropic models, you first need to sign up for the open beta [here](https://claude.ai/login) to obtain an API key.",
collectInputFor: [
{
inputType: CollectInputType.text,
key: "api_key",
label: "API Key",
placeholder: "Enter your Anthropic API key",
required: true,
},
],
packages: [
{
title: "Claude-2",
description: "A highly capable model with a 100k context length",
params: {
model: "claude-2",
context_length: 100000,
title: "Claude-2",
},
},
],
},
ollama: {
title: "Ollama",
class: "Ollama",
description:
"One of the fastest ways to get started with local models on Mac or Linux",
longDescription:
'To get started with Ollama, follow these steps:\n1. Download from [ollama.ai](https://ollama.ai/) and open the application\n2. Open a terminal and run `ollama pull <MODEL_NAME>`. Example model names are `codellama:7b-instruct` or `llama2:7b-text`. You can find the full list [here](https://ollama.ai/library).\n3. Make sure that the model name used in step 2 is the same as the one in config.py (e.g. `model="codellama:7b-instruct"`)\n4. Once the model has finished downloading, you can start asking questions through Continue.',
icon: "ollama.png",
tags: [ModelProviderTag["Local"], ModelProviderTag["Open-Source"]],
packages: [
...codeLlamaPackages.map((p) => ({
...p,
refUrl: "https://ollama.ai/library/codellama",
})),
...llama2Packages.map((p) => ({
...p,
refUrl: "https://ollama.ai/library/llama2",
})),
],
collectInputFor: [contextLengthInput],
},
together: {
title: "TogetherAI",
class: "TogetherLLM",
description:
"Use the TogetherAI API for extremely fast streaming of open-source models",
icon: "together.png",
longDescription: `Together is a hosted service that provides extremely fast streaming of open-source language models. To get started with Together:\n1. Obtain an API key from [here](https://together.ai)\n2. Paste below\n3. Select a model preset`,
tags: [
ModelProviderTag["Requires API Key"],
ModelProviderTag["Open-Source"],
],
params: {
api_key: "",
},
collectInputFor: [
{
inputType: CollectInputType.text,
key: "api_key",
label: "API Key",
placeholder: "Enter your TogetherAI API key",
required: true,
},
],
packages: [
...codeLlamaPackages.map((p) => {
return {
...p,
params: {
...p.params,
model:
"togethercomputer/" +
p.params.model.replace("llama2", "llama-2").replace(":", "-"),
},
};
}),
...llama2Packages.map((p) => {
return {
...p,
params: {
...p.params,
model:
"togethercomputer/" +
p.params.model
.replace("codellama", "CodeLlama")
.replace(":", "-")
.replace("instruct", "Instruct"),
},
};
}),
].map((p) => {
p.params.context_length = 4096;
return p;
}),
},
lmstudio: {
title: "LM Studio",
class: "GGML",
description:
"One of the fastest ways to get started with local models on Mac or Windows",
longDescription:
"LMStudio provides a professional and well-designed GUI for exploring, configuring, and serving LLMs. It is available on both Mac and Windows. To get started:\n1. Download from [lmstudio.ai](https://lmstudio.ai/) and open the application\n2. Search for and download the desired model from the home screen of LMStudio.\n3. In the left-bar, click the '<->' icon to open the Local Inference Server and press 'Start Server'.\n4. Once your model is loaded and the server has started, you can begin using Continue.",
icon: "lmstudio.png",
tags: [ModelProviderTag["Local"], ModelProviderTag["Open-Source"]],
params: {
server_url: "http://localhost:1234",
},
packages: [llama2FamilyPackage],
collectInputFor: [contextLengthInput],
},
replicate: {
title: "Replicate",
class: "ReplicateLLM",
description: "Use the Replicate API to run open-source models",
longDescription: `Replicate is a hosted service that makes it easy to run ML models. To get started with Replicate:\n1. Obtain an API key from [here](https://replicate.com)\n2. Paste below\n3. Select a model preset`,
params: {
api_key: "",
},
collectInputFor: [
{
inputType: CollectInputType.text,
key: "api_key",
label: "API Key",
placeholder: "Enter your Replicate API key",
required: true,
},
],
icon: "replicate.png",
tags: [
ModelProviderTag["Requires API Key"],
ModelProviderTag["Open-Source"],
],
packages: [...codeLlamaPackages, ...llama2Packages].map((p) => {
return {
...p,
params: {
...p.params,
model:
"meta/" +
p.params.model.replace(":", "-").replace("llama2", "llama-2"),
},
};
}),
},
llamacpp: {
title: "llama.cpp",
class: "LlamaCpp",
description: "If you are running the llama.cpp server from source",
longDescription: `llama.cpp comes with a [built-in server](https://github.com/ggerganov/llama.cpp/tree/master/examples/server#llamacppexampleserver) that can be run from source. To do this:
1. Clone the repository with \`git clone https://github.com/ggerganov/llama.cpp\`.
2. \`cd llama.cpp\`
3. Download the model you'd like to use and place it in the \`llama.cpp/models\` directory (the best place to find models is [The Bloke on HuggingFace](https://huggingface.co/TheBloke))
4. Run the llama.cpp server with the command below (replacing with the model you downloaded):
\`\`\`shell
.\\server.exe -c 4096 --host 0.0.0.0 -t 16 --mlock -m models/codellama-7b-instruct.Q8_0.gguf
\`\`\`
After it's up and running, you can start using Continue.`,
icon: "llamacpp.png",
tags: [ModelProviderTag.Local, ModelProviderTag["Open-Source"]],
packages: [llama2FamilyPackage],
collectInputFor: [contextLengthInput],
},
palm: {
title: "Google PaLM API",
class: "GooglePaLMAPI",
description:
"Try out the Google PaLM API, which is currently in public preview, using an API key from Google Makersuite",
longDescription: `To get started with Google Makersuite, obtain your API key from [here](https://developers.generativeai.google/products/makersuite) and paste it below.
> Note: Google's PaLM language models do not support streaming, so the response will appear all at once after a few seconds.`,
icon: "google-palm.png",
tags: [ModelProviderTag["Requires API Key"]],
collectInputFor: [
{
inputType: CollectInputType.text,
key: "api_key",
label: "API Key",
placeholder: "Enter your MakerSpace API key",
required: true,
},
],
packages: [
{
title: "chat-bison-001",
description:
"Google PaLM's chat-bison-001 model, fine-tuned for chatting about code",
params: {
model: "chat-bison-001",
context_length: 8000,
},
},
],
},
hftgi: {
title: "HuggingFace TGI",
class: "HuggingFaceTGI",
description:
"HuggingFace Text Generation Inference is an advanced, highly-performant option for serving open-source models to multiple people",
longDescription:
"HuggingFace Text Generation Inference is an advanced, highly-performant option for serving open-source models to multiple people. To get started, follow the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour) on their website to set up the Docker container. Make sure to enter the server URL below that corresponds to the host and port you set up for the Docker container.",
icon: "hf.png",
tags: [ModelProviderTag.Local, ModelProviderTag["Open-Source"]],
packages: [llama2FamilyPackage],
collectInputFor: [
contextLengthInput,
{ ...serverUrlInput, defaultValue: "http://localhost:8080" },
],
},
ggml: {
title: "Other OpenAI-compatible API",
class: "GGML",
description:
"If you are using any other OpenAI-compatible API, for example text-gen-webui, FastChat, LocalAI, or llama-cpp-python, you can simply enter your server URL",
longDescription: `If you are using any other OpenAI-compatible API, you can simply enter your server URL. If you still need to set up your model server, you can follow a guide below:
- [text-gen-webui](https://github.com/oobabooga/text-generation-webui/tree/main/extensions/openai#setup--installation)
- [LocalAI](https://localai.io/basics/getting_started/)
- [llama-cpp-python](https://github.com/continuedev/ggml-server-example)
- [FastChat](https://github.com/lm-sys/FastChat/blob/main/docs/openai_api.md)`,
params: {
server_url: "",
},
collectInputFor: [
{
...serverUrlInput,
defaultValue: "http://localhost:8000",
},
contextLengthInput,
],
icon: "openai.svg",
tags: [ModelProviderTag.Local, ModelProviderTag["Open-Source"]],
packages: [llama2FamilyPackage],
},
freetrial: {
title: "GPT-4 limited free trial",
class: "OpenAIFreeTrial",
description:
"New users can try out Continue for free using a proxy server that securely makes calls to OpenAI using our API key",
longDescription:
'New users can try out Continue for free using a proxy server that securely makes calls to OpenAI using our API key. If you are ready to use your own API key or have used all 250 free uses, you can enter your API key in config.py where it says `api_key=""` or select another model provider.',
icon: "openai.svg",
tags: [ModelProviderTag.Free],
packages: [gpt4, gpt35turbo],
},
};
|