diff options
author | Joe Zhao <ztuowen@gmail.com> | 2014-04-14 08:14:45 +0800 |
---|---|---|
committer | Joe Zhao <ztuowen@gmail.com> | 2014-04-14 08:14:45 +0800 |
commit | cccccbf6cca94a3eaf813b4468453160e91c332b (patch) | |
tree | 23418cb73a10ae3b0688681a7f0ba9b06424583e /src/CuTNetLib/cuSparseLinearity.h | |
download | tnet-cccccbf6cca94a3eaf813b4468453160e91c332b.tar.gz tnet-cccccbf6cca94a3eaf813b4468453160e91c332b.tar.bz2 tnet-cccccbf6cca94a3eaf813b4468453160e91c332b.zip |
First commit
Diffstat (limited to 'src/CuTNetLib/cuSparseLinearity.h')
-rw-r--r-- | src/CuTNetLib/cuSparseLinearity.h | 115 |
1 files changed, 115 insertions, 0 deletions
diff --git a/src/CuTNetLib/cuSparseLinearity.h b/src/CuTNetLib/cuSparseLinearity.h new file mode 100644 index 0000000..3cdf078 --- /dev/null +++ b/src/CuTNetLib/cuSparseLinearity.h @@ -0,0 +1,115 @@ +#ifndef _CUSPARSE_LINEARITY_H_ +#define _CUSPARSE_LINEARITY_H_ + + +#include "cuComponent.h" +#include "cumatrix.h" + + +#include "Matrix.h" +#include "Vector.h" + + +namespace TNet { + + /** + * \brief CuSparseLinearity summation function + * + * \ingroup CuNNUpdatable + * Using weight masks to avoid fluctuation in the output + * -Weights are masked when it is lower than certain threshold - mSparsifyWeightThreshold + * -Weights are activated when the accumulated change is larger than certan value - mUnsparsifyAccu + * -L1 lasso function zeroing weights + * . + * \sa CuBiasedLinearity + */ + class CuSparseLinearity : public CuUpdatableComponent + { + public: + + CuSparseLinearity(size_t nInputs, size_t nOutputs, CuComponent *pPred); + ~CuSparseLinearity(); + + ComponentType GetType() const; + const char* GetName() const; + + void PropagateFnc(const CuMatrix<BaseFloat>& X, CuMatrix<BaseFloat>& Y); + void BackpropagateFnc(const CuMatrix<BaseFloat>& X, CuMatrix<BaseFloat>& Y); + + void Update(); + void UpdateMask(); + + void ReadFromStream(std::istream& rIn); + void WriteToStream(std::ostream& rOut); + + void L1(BaseFloat l1) { + mL1Const = l1; + } + + protected: + CuMatrix<BaseFloat> mLinearity; ///< Matrix with neuron weights + CuVector<BaseFloat> mBias; ///< Vector with biases + CuMatrix<BaseFloat> mSparsityMask; ///< Mask which selects active weights + + CuMatrix<BaseFloat> mLinearityCorrection; ///< Matrix for linearity updates + CuVector<BaseFloat> mBiasCorrection; ///< Vector for bias updates + + CuMatrix<BaseFloat> mLinearityCorrectionAccu; ///< Accumulator for linearity updates + + BaseFloat mL1Const; ///< L1 regularization constant + + size_t mNFrames; ///< Number of accumulated frames + BaseFloat mSparsifyWeightThreshold; ///< Cutoff + BaseFloat mUnsparsifyAccu; ///< Threshold to unsparsify the Cutoff + + + }; + + + + + //////////////////////////////////////////////////////////////////////////// + // INLINE FUNCTIONS + // CuSparseLinearity:: + inline + CuSparseLinearity:: + CuSparseLinearity(size_t nInputs, size_t nOutputs, CuComponent *pPred) + : CuUpdatableComponent(nInputs, nOutputs, pPred), + mLinearity(nInputs,nOutputs), mBias(nOutputs), mSparsityMask(nInputs,nOutputs), + mLinearityCorrection(nInputs,nOutputs), mBiasCorrection(nOutputs), + mLinearityCorrectionAccu(nInputs,nOutputs), + mNFrames(0), mSparsifyWeightThreshold(1.0e-3), + mUnsparsifyAccu(1e20f) + { + mLinearityCorrection.SetConst(0.0f); + mBiasCorrection.SetConst(0.0f); + mLinearityCorrectionAccu.SetConst(0.0f); + } + + + inline + CuSparseLinearity:: + ~CuSparseLinearity() + { } + + inline CuComponent::ComponentType + CuSparseLinearity:: + GetType() const + { + return CuComponent::SPARSE_LINEARITY; + } + + inline const char* + CuSparseLinearity:: + GetName() const + { + return "<sparselinearity>"; + } + + + +} //namespace + + + +#endif |