1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
|
/***************************************************************************
* copyright : (C) 2011 by Karel Vesely,UPGM,FIT,VUT,Brno *
* email : iveselyk@fit.vutbr.cz *
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the APACHE License as published by the *
* Apache Software Foundation; either version 2.0 of the License, *
* or (at your option) any later version. *
* *
***************************************************************************/
#define SVN_DATE "$Date: 2011-04-29 14:18:20 +0200 (Fri, 29 Apr 2011) $"
#define SVN_AUTHOR "$Author: iveselyk $"
#define SVN_REVISION "$Revision: 49 $"
#define SVN_ID "$Id: TMpeCu.cc 49 2011-04-29 12:18:20Z iveselyk $"
#define MODULE_VERSION "1.0.0 "__TIME__" "__DATE__" "SVN_ID
/**
* \file TMpeCu.cc
*/
/*** STK includes */
#include "STKLib/trunk/config.h"
#ifdef HAVE_MEMALIGN
#undef HAVE_MEMALIGN
#endif
#ifdef HAVE_POSIX_MEMALIGN
#undef HAVE_POSIX_MEMALIGN
#endif
/*** include commons */
#include "STKLib/common.h"
#include "Common.h"
/*** STK includes */
#include "STKLib/fileio.h"
#include "STKLib/Models.h"
#include "STKLib/Decoder.h"
#include "STKLib/stkstream.h"
#include "STKLib/MlfStream.h"
#include "STKLib/labels.h"
/*** Kaldi includes */
#include "Error.h"
#include "Timer.h"
#include "Features.h"
#include "UserInterface.h"
/*** TNet includes */
#include "cuObjectiveFunction.h"
#include "cuNetwork.h"
#include "cuCache.h"
#include "cuda.h"
/*** STL includes */
#include <iostream>
#include <sstream>
#include <numeric>
//////////////////////////////////////////////////////////////////////
// DEFINES
//
#define SNAME "TMPECU"
using namespace TNet;
void usage(const char* progname)
{
const char *tchrptr;
if ((tchrptr = strrchr(progname, '\\')) != NULL) progname = tchrptr+1;
if ((tchrptr = strrchr(progname, '/')) != NULL) progname = tchrptr+1;
fprintf(stderr,
"\n%s version " MODULE_VERSION "\n"
"\nUSAGE: %s [options] DataFiles...\n\n"
" Option Default\n\n"
" -n f Set learning rate to f 0.06\n"
" -t f [i l] Set pruning to f [inc limit] Off\n"
" -A Print command line arguments Off\n"
" -C cf Set config file to cf Default\n"
" -D Display configuration variables Off\n"
" -G fmt Set source trascription format to fmt As config\n"
" -H mmf Load NN macro file \n"
" -I mlf Load master label file mlf (with den_num latts) \n"
" -L dir Set input label (or net) dir Current\n"
//" -O fn Objective function [mpe,mmi] mpe\n"
" -S file Set script file None\n"
" -T N Set trace flags to N 0\n"
" -V Print version information Off\n"
" -X ext Set input label file ext lab\n"
"\n"
"ALLOWXWRDEXP ENDTIMESHIFT EXACTTIMEMERGE FEATURETRANSFORM GRADDIVFRM HMM HNETFILTER LEARNINGRATE LEARNRATEFACTORS LMSCALE MAXACTIVEMODELS MINACTIVEMODELS MINIMIZENET MLGAMMA MODELPENALTY NATURALREADORDER NFRAMEOUTPNORM OCCUPPSCALE OUTPSCALE POSTERIORSCALE PRINTCONFIG PRINTVERSION PRONUNSCALE PRUNING PRUNINGINC PRUNINGMAX REMEXPWRDNODES RESPECTPRONVARS SCRIPT SHOWGAMMA SOURCEDICT SOURCEMLF SOURCEMMF SOURCETRANSCDIR SOURCETRANSCEXT STARTTIMESHIFT TARGETMMF TIMEPRUNING TRACE TRANSPSCALE WEIGHTCOST WEIGHTPUSHING WORDPENALTY\n"
"\n"
"STARTFRMEXT ENDFRMEXT CMEANDIR CMEANMASK VARSCALEDIR VARSCALEMASK VARSCALEFN TARGETKIND DERIVWINDOWS DELTAWINDOW ACCWINDOW THIRDWINDOW\n"
"\n"
" %s is Copyright (C) 2010-2011 Karel Vesely\n"
" licensed under the APACHE License, version 2.0\n"
" Bug reports, feedback, etc, to: iveselyk@fit.vutbr.cz\n"
"\n", progname, progname, progname);
exit(-1);
}
///////////////////////////////////////////////////////////////////////
// MAIN FUNCTION
//
int main(int argc, char *argv[]) try
{
const char* p_option_string =
" -n r LEARNINGRATE"
" -t ror PRUNING PRUNINGINC PRUNINGMAX"
" -D n PRINTCONFIG=TRUE"
" -G r SOURCETRANSCFMT"
" -H l SOURCEMMF"
" -I r SOURCEMLF"
" -L r SOURCETRANSCDIR"
" -S l SCRIPT"
" -T r TRACE"
" -V n PRINTVERSION=TRUE"
" -X r SOURCETRANSCEXT";
//STK global objects
STK::ModelSet hset;
STK::Decoder<STK::DecoderNetwork> decoder;
std::ostringstream os_warn;
//TNet global objects
UserInterface ui;
FeatureRepository feature_repo;
CuNetwork network;
CuNetwork transform_network;
Timer timer;
Timer timer_frontend;
double time_frontend = 0.0;
Timer timer_decoder;
double time_decoder = 0.0;
// vars for STK
const char* p_hmm_file;
const char* p_src_mlf;
MyHSearchData nonCDphHash;
MyHSearchData phoneHash;
MyHSearchData dictHash;
double outprb_scale;
char label_file[1024];
FILE* ilfp = NULL;
const char* src_lbl_dir;
const char* src_lbl_ext;
const char* dictionary;
double word_penalty;
double model_penalty;
double grammar_scale;
double posterior_scale;
bool time_pruning;
double pronun_scale;
double transp_scale;
double occprb_scale;
double state_pruning;
int max_active;
int min_active;
STK::ExpansionOptions expOptions = {0};
STKNetworkOutputFormat in_net_fmt = {0};
double stprn_step;
double stprn_limit;
STK::BasicVector<FLOAT>* p_weight_vector = NULL;
const char* net_filter;
double avg_accuracy = 0.0;
// vars for TNet
const char* p_script;
BaseFloat learning_rate;
const char* learning_rate_factors;
BaseFloat weightcost;
bool grad_div_frm;
const char* p_source_mmf_file;
const char* p_input_transform;
const char* p_targetmmf;
bool show_gamma;
bool ml_gamma;
int trace;
// variables for feature repository
bool swap_features;
int target_kind;
int deriv_order;
int* p_deriv_win_lenghts;
int start_frm_ext;
int end_frm_ext;
char* cmn_path;
char* cmn_file;
const char* cmn_mask;
char* cvn_path;
char* cvn_file;
const char* cvn_mask;
const char* cvg_file;
// OPTION PARSING ..........................................................
// use the STK option parsing
if (argc == 1) { usage(argv[0]); return 1; }
int args_parsed = ui.ParseOptions(argc, argv, p_option_string, SNAME);
// OPTION RETRIEVAL ........................................................
// extract the feature parameters
swap_features = !ui.GetBool(SNAME":NATURALREADORDER", TNet::IsBigEndian());
target_kind = ui.GetFeatureParams(&deriv_order, &p_deriv_win_lenghts,
&start_frm_ext, &end_frm_ext, &cmn_path, &cmn_file, &cmn_mask,
&cvn_path, &cvn_file, &cvn_mask, &cvg_file, SNAME":", 0);
// extract STK parameters
p_hmm_file = ui.GetStr(SNAME":HMM", NULL);
p_src_mlf = ui.GetStr(SNAME":SOURCEMLF", NULL);
outprb_scale = ui.GetFlt(SNAME":OUTPSCALE", 1.0);
src_lbl_dir = ui.GetStr(SNAME":SOURCETRANSCDIR", NULL);
src_lbl_ext = ui.GetStr(SNAME":SOURCETRANSCEXT", NULL);
dictionary = ui.GetStr(SNAME":SOURCEDICT", NULL);
word_penalty = ui.GetFlt(SNAME":WORDPENALTY", 0.0);
model_penalty= ui.GetFlt(SNAME":MODELPENALTY", 0.0);
grammar_scale= ui.GetFlt(SNAME":LMSCALE", 1.0);
posterior_scale= ui.GetFlt(SNAME":POSTERIORSCALE", 1.0);
time_pruning = ui.GetBool(SNAME":TIMEPRUNING", false);
in_net_fmt.mNoTimes = !time_pruning;
pronun_scale = ui.GetFlt(SNAME":PRONUNSCALE", 1.0);
transp_scale = ui.GetFlt(SNAME":TRANSPSCALE", 1.0);
occprb_scale = ui.GetFlt(SNAME":OCCUPPSCALE", 1.0);
state_pruning= ui.GetFlt(SNAME":PRUNING", 0.0);
max_active = ui.GetInt(SNAME":MAXACTIVEMODELS", 0);
min_active = ui.GetInt(SNAME":MINACTIVEMODELS", 0);
expOptions.mCDPhoneExpansion =
ui.GetBool(SNAME":ALLOWXWRDEXP", false);
expOptions.mRespectPronunVar
= ui.GetBool(SNAME":RESPECTPRONVARS", false);
expOptions.mStrictTiming
= ui.GetBool(SNAME":EXACTTIMEMERGE", false);
expOptions.mNoWeightPushing
=!ui.GetBool(SNAME":WEIGHTPUSHING", true);
expOptions.mNoOptimization
=!ui.GetBool(SNAME":MINIMIZENET", false);
expOptions.mRemoveWordsNodes
= ui.GetBool(SNAME":REMEXPWRDNODES", false);
stprn_step = ui.GetFlt(SNAME":PRUNINGINC", 0.0);
stprn_limit = ui.GetFlt(SNAME":PRUNINGMAX", 0.0);
net_filter = ui.GetStr(SNAME":HNETFILTER", NULL);
if(NULL != net_filter) {
transc_filter = net_filter;
}
in_net_fmt.mStartTimeShift =
ui.GetFlt(SNAME":STARTTIMESHIFT", 0.0);
in_net_fmt.mEndTimeShift =
ui.GetFlt(SNAME":ENDTIMESHIFT", 0.0);
// extract other parameters
p_source_mmf_file = ui.GetStr(SNAME":SOURCEMMF", NULL);
p_input_transform = ui.GetStr(SNAME":FEATURETRANSFORM",NULL);
p_targetmmf = ui.GetStr(SNAME":TARGETMMF", NULL);
p_script = ui.GetStr(SNAME":SCRIPT", NULL);
learning_rate = ui.GetFlt(SNAME":LEARNINGRATE" , 0.06f);
learning_rate_factors = ui.GetStr(SNAME":LEARNRATEFACTORS", NULL);
weightcost = ui.GetFlt(SNAME":WEIGHTCOST" , 0.0f);
grad_div_frm = ui.GetBool(SNAME":GRADDIVFRM", true);
show_gamma = ui.GetBool(SNAME":SHOWGAMMA", false);
ml_gamma = ui.GetBool(SNAME":MLGAMMA", false);
trace = ui.GetInt(SNAME":TRACE", 0);
if(trace&1) { CuDevice::Instantiate().Verbose(true); }
// process the parameters
if(ui.GetBool(SNAME":PRINTCONFIG", false)) {
std::cout << std::endl;
ui.PrintConfig(std::cout);
std::cout << std::endl;
}
if(ui.GetBool(SNAME":PRINTVERSION", false)) {
std::cout << std::endl;
std::cout << "======= TNET v"MODULE_VERSION" xvesel39 =======" << std::endl;
std::cout << std::endl;
}
ui.CheckCommandLineParamUse();
// the rest of the parameters are the feature files
for (; args_parsed < argc; args_parsed++) {
feature_repo.AddFile(argv[args_parsed]);
}
//**************************************************************************
//**************************************************************************
// OPTION PARSING DONE .....................................................
////////////////////////////////////////////////////////////////////////////
// initialize STK
// initialize basic ModelSet
hset.Init(STK::MODEL_SET_WITH_ACCUM);
hset.mUpdateMask = 0;
if (NULL != p_hmm_file) {
TraceLog(std::string("Reading HMM model:")+p_hmm_file);
hset.ParseMmf(p_hmm_file, NULL, false);
} else {
Error("Missing HMM model, use: --HMM=FILE");
}
hset.ExpandPredefXforms();
hset.AttachPriors(&hset);
nonCDphHash = hset.MakeCIPhoneHash();
hset.mCmllrStats = false;
hset.AllocateAccumulatorsForXformStats();
hset.mUpdateType = STK::UT_EBW;
hset.mMinVariance = 0.0; ///< global minimum variance floor
hset.MMI_E = 2.0;
hset.MMI_h = 2.0;
hset.MMI_tauI = 200.0;
hset.JSmoothing = false;
hset.mISmoothingMaxOccup = -1.0;
hset.mMinOccupation = 0.0;
hset.mMapTau = 0;
hset.mGaussLvl2ModelReest = false;
hset.mMinOccurances = 3;
hset.mMinMixWeight = 1.0 * MIN_WEGIHT;
hset.mUpdateMask = 0;
hset.mSaveGlobOpts = true;
hset.mModelUpdateDoesNotNormalize = false;
hset.ResetAccums();
//open mlf with lattices
ilfp = OpenInputMLF(p_src_mlf);
//reserve space for hashes
if (!STK::my_hcreate_r(100, &dictHash)
|| !STK::my_hcreate_r(100, &phoneHash))
{
Error("Insufficient memory");
}
//read dictionary
if (dictionary != NULL) {
ReadDictionary(dictionary, &dictHash, &phoneHash);
}
if (dictHash.mNEntries == 0)
expOptions.mNoWordExpansion = 1;
////////////////////////////////////////////////////////////////////////////
// initialize TNet
//read the input transform network
if(NULL != p_input_transform) {
if(trace&1) TraceLog(std::string("Reading input transform network: ")+p_input_transform);
transform_network.ReadNetwork(p_input_transform);
}
//read the neural network
if(NULL != p_source_mmf_file) {
if(trace&1) TraceLog(std::string("Reading network: ")+p_source_mmf_file);
network.ReadNetwork(p_source_mmf_file);
} else {
Error("Source MMF must be specified [-H]");
}
// initialize the feature repository
feature_repo.Init(
swap_features, start_frm_ext, end_frm_ext, target_kind,
deriv_order, p_deriv_win_lenghts,
cmn_path, cmn_mask, cvn_path, cvn_mask, cvg_file
);
if(NULL != p_script) {
feature_repo.AddFileList(p_script);
} else {
Warning("WARNING: The script file is missing [-S]");
}
//set the learnrate
network.SetLearnRate(learning_rate, learning_rate_factors);
//set the L2 regularization constant
network.SetWeightcost(weightcost);
//set division of gradient by number of frames
network.SetGradDivFrm(grad_div_frm);
//**********************************************************************
//**********************************************************************
// INITIALIZATION DONE .................................................
//
// Start training
timer.Start();
std::cout << "===== TMpeCu TRAINING STARTED =====" << std::endl;
feature_repo.Rewind();
//**********************************************************************
//**********************************************************************
// MAIN LOOP
//
int frames = 0;
int done = 0;
CuMatrix<BaseFloat> feats, posteriors, globerr;
for(feature_repo.Rewind(); !feature_repo.EndOfList(); feature_repo.MoveNext()) {
timer_frontend.Start();
Matrix<BaseFloat> feats_host, posteriors_host, globerr_host;
CuMatrix<BaseFloat> feats_original;
CuMatrix<BaseFloat> feats_expanded;
//read feats, perfrom feature transform
feature_repo.ReadFullMatrix(feats_host);
feats_original.CopyFrom(feats_host);
transform_network.Propagate(feats_original,feats_expanded);
//trim the start/end context
int rows = feats_expanded.Rows()-start_frm_ext-end_frm_ext;
feats.Init(rows,feats_expanded.Cols());
feats.CopyRows(rows,start_frm_ext,feats_expanded,0);
timer_frontend.End(); time_frontend += timer_frontend.Val();
//forward pass
network.Propagate(feats,posteriors);
posteriors.CopyTo(posteriors_host);
posteriors_host.ApplyLog();
/***************************************************
***************************************************
* DECODER PART get the error derivatives
*
*/
{
timer_decoder.Start();
STK::Matrix<BaseFloat> posteriors_stk, gammas_stk;
//copy the posteriors to STK matrix
posteriors_stk.Init(posteriors_host.Rows(), posteriors_host.Cols());
for(size_t r=0; r<posteriors_host.Rows(); r++) {
memcpy(posteriors_stk[r], posteriors_host.pRowData(r),
posteriors_host.Cols()*sizeof(BaseFloat));
}
//check dims
if (hset.mInputVectorSize != posteriors_stk.Cols()) {
std::ostringstream os;
os <<"Vector size ["<<posteriors_stk.Cols()<<"]"
<<" in '"<<feature_repo.Current().Logical()<<"'"
<<" is incompatible with source HMM set ["<<hset.mInputVectorSize<<"]";
Error(os.str());
}
//load lattice
strcpy(label_file, feature_repo.Current().Logical().c_str());
ilfp = OpenInputLabelFile(
label_file,
src_lbl_dir,
src_lbl_ext ? src_lbl_ext : "net",
ilfp,
p_src_mlf);
ReadSTKNetwork(
ilfp,
&dictHash,
&phoneHash,
STK::WORD_NOT_IN_DIC_WARN,
in_net_fmt,
feature_repo.CurrentHeader().mSamplePeriod,
label_file,
p_src_mlf, false, decoder.rNetwork());
decoder.rNetwork().ExpansionsAndOptimizations(
expOptions,
in_net_fmt,
&dictHash,
&nonCDphHash,
&phoneHash,
word_penalty,
model_penalty,
grammar_scale,
posterior_scale);
// CloseInputLabelFile(ilfp, p_src_mlf);
//initialize the decoder
decoder.Init(&hset, &hset);
decoder.mTimePruning = time_pruning;
decoder.mWPenalty = word_penalty;
decoder.mMPenalty = model_penalty;
decoder.mLmScale = grammar_scale;
decoder.mPronScale = pronun_scale;
decoder.mTranScale = transp_scale;
decoder.mOutpScale = outprb_scale;
decoder.mOcpScale = occprb_scale;
decoder.mPruningThresh = state_pruning > 0.0 ? state_pruning : -LOG_0;
decoder.mMaxActiveModels = max_active;
decoder.mMinActiveModels = min_active;
decoder.mAccumType = STK::AT_MPE;
if(ml_gamma) {
decoder.mAccumType = STK::AT_ML;
}
//decode
double prn_step = stprn_step;
double prn_limit = stprn_limit;
int n_frames = (int)posteriors_stk.Rows();
if (ui.GetBool(SNAME":NFRAMEOUTPNORM", false))
{
decoder.mOutpScale = outprb_scale / n_frames;
decoder.mPruningThresh /= n_frames;
prn_step /= n_frames;
prn_limit /= n_frames;
}
if(n_frames < 1) {
Error(std::string("No posterior frames, ")+feature_repo.Current().Logical());
}
FLOAT P;
FLOAT avgAcc;
for (;;)
{
//***** RUN FWBW with MPE, return gamma values *********/
P = decoder.GetMpeGamma(posteriors_stk,gammas_stk, avgAcc,
n_frames, feature_repo.Current().Weight(), p_weight_vector);
if(P > LOG_MIN)
break;
if (decoder.mPruningThresh <= LOG_MIN ||
prn_step <= 0.0 ||
(decoder.mPruningThresh += prn_step) > prn_limit)
{
Error(std::string("Overpruning or bad data, skipping file " +
feature_repo.Current().Logical()));
break;
}
os_warn.clear();
os_warn << "Overpruning or bad data in file " << feature_repo.Current().Logical()
<< ", trying pruning threshold: " << decoder.mPruningThresh;
Warning(os_warn.str());
}
avg_accuracy += avgAcc;
//cleanup
posteriors_stk.Destroy();
decoder.Clear();
//copy gammas to TNet matrix
globerr_host.Init(gammas_stk.Rows(),gammas_stk.Cols());
for(size_t r=0; r<posteriors_host.Rows(); r++) {
memcpy(globerr_host.pRowData(r), gammas_stk[r],
gammas_stk.Cols()*sizeof(BaseFloat));
}
//print gamma matrix for debug
if(show_gamma) {
std::cout << globerr_host;
}
//scale gammas by negative acoustic scale kapa
// dE/d_activation = kapa(gama_den - gama_num) = -kapa(gama_mpe)
globerr_host.Scale(-outprb_scale);
//globerr_host.Scale(outprb_scale);
timer_decoder.End(); time_decoder += timer_decoder.Val();
}
/**DECODER PART END********************************
**************************************************/
globerr.CopyFrom(globerr_host);
//check the dimensionalities
if(globerr.Rows() != posteriors.Rows()) {
std::ostringstream os;
os << "Non-matching number of rows,"
<< " netout:" << posteriors.Rows()
<< " errfile:" << globerr.Rows();
Error(os.str());
}
if(globerr.Cols() != posteriors.Cols()) {
std::ostringstream os;
os << "Non-matching number of network outputs,"
<< " netout:" << posteriors.Cols()
<< " errfile:" << globerr.Cols();
Error(os.str());
}
if(learning_rate != 0.0) {
//backward pass
network.Backpropagate(globerr);
}
frames += feats.Rows();
if(trace&1 && (++done%100)==1) {
std::cout << "(" << done << "/" << feature_repo.QueueSize() << ") ";
}
/*
unsigned int free, total;
cuMemGetInfo(&free, &total);
std::cout << "freemem:" << free / (1024*1024) << "MB ";
*/
}
CloseInputMLF(ilfp);
//**********************************************************************
//**********************************************************************
// TRAINING FINISHED .................................................
//
// Let's store the network, report the log
if(trace&1) TraceLog("Training finished");
//write the network
if (NULL != p_targetmmf) {
if(trace&1) TraceLog(std::string("Writing network: ")+p_targetmmf);
network.WriteNetwork(p_targetmmf);
} else {
Error("forgot to specify --TARGETMMF argument");
}
timer.End();
std::cout << "===== TMpeCu FINISHED ( " << timer.Val() << "s ) "
<< "[FPS:" << float(frames) / timer.Val()
<< ",RT:" << 1.0f / (float(frames) / timer.Val() / 100.0f)
<< "] =====" << std::endl;
std::cout << "-- MPE average approximate accuracy: "
<< avg_accuracy/(float)feature_repo.QueueSize()
<< " utterances: " << feature_repo.QueueSize()
<< std::endl;
std::cout << "T-fe: " << time_frontend << std::endl;
std::cout << "T-decode: " << time_decoder << std::endl;
return 0; ///finish OK
} catch (std::exception& rExc) {
std::cerr << "Exception thrown" << std::endl;
std::cerr << rExc.what() << std::endl;
return 1;
}
|