1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
#include <sys/time.h>
#include "Cache.h"
#include "Matrix.h"
#include "Vector.h"
namespace TNet {
Cache::
Cache()
: mState(EMPTY), mIntakePos(0), mExhaustPos(0), mDiscarded(0),
mRandomized(false), mTrace(0)
{ }
Cache::
~Cache()
{ }
void
Cache::
Init(size_t cachesize, size_t bunchsize, long int seed)
{
if((cachesize % bunchsize) != 0) {
KALDI_ERR << "Non divisible cachesize" << cachesize
<< " by bunchsize" << bunchsize;
}
mCachesize = cachesize;
mBunchsize = bunchsize;
mState = EMPTY;
mIntakePos = 0;
mExhaustPos = 0;
mRandomized = false;
if(seed == 0) {
//generate seed
struct timeval tv;
if (gettimeofday(&tv, 0) == -1) {
Error("gettimeofday does not work.");
exit(-1);
}
seed = (int)(tv.tv_sec) + (int)tv.tv_usec + (int)(tv.tv_usec*tv.tv_usec);
}
srand48(seed);
}
void
Cache::
AddData(const Matrix<BaseFloat>& rFeatures, const Matrix<BaseFloat>& rDesired)
{
assert(rFeatures.Rows() == rDesired.Rows());
//lazy buffers allocation
if(mFeatures.Rows() != mCachesize) {
mFeatures.Init(mCachesize,rFeatures.Cols());
mDesired.Init(mCachesize,rDesired.Cols());
}
//warn if segment longer than half-cache
if(rFeatures.Rows() > mCachesize/2) {
std::ostringstream os;
os << "Too long segment and small feature cache! "
<< " cachesize: " << mCachesize
<< " segmentsize: " << rFeatures.Rows();
Warning(os.str());
}
//change state
if(mState == EMPTY) {
if(mTrace&3) std::cout << "/" << std::flush;
mState = INTAKE; mIntakePos = 0;
//check for leftover from previous segment
int leftover = mFeaturesLeftover.Rows();
//check if leftover is not bigger than cachesize
if(leftover > mCachesize) {
std::ostringstream os;
os << "Too small feature cache: " << mCachesize
<< ", truncating: "
<< leftover - mCachesize << " frames from previous segment leftover";
//Error(os.str());
Warning(os.str());
leftover = mCachesize;
}
//prefill cache with leftover
if(leftover > 0) {
memcpy(mFeatures.pData(),mFeaturesLeftover.pData(),
(mFeaturesLeftover.MSize() < mFeatures.MSize()?
mFeaturesLeftover.MSize() : mFeatures.MSize())
);
memcpy(mDesired.pData(),mDesiredLeftover.pData(),
(mDesiredLeftover.MSize() < mDesired.MSize()?
mDesiredLeftover.MSize() : mDesired.MSize())
);
mFeaturesLeftover.Destroy();
mDesiredLeftover.Destroy();
mIntakePos += leftover;
}
}
assert(mState == INTAKE);
assert(rFeatures.Rows() == rDesired.Rows());
if(mTrace&2) std::cout << "F" << std::flush;
int cache_space = mCachesize - mIntakePos;
int feature_length = rFeatures.Rows();
int fill_rows = (cache_space<feature_length)? cache_space : feature_length;
int leftover = feature_length - fill_rows;
assert(cache_space > 0);
assert(mFeatures.Stride()==rFeatures.Stride());
assert(mDesired.Stride()==rDesired.Stride());
//copy the data to cache
memcpy(mFeatures.pData()+mIntakePos*mFeatures.Stride(),
rFeatures.pData(),
fill_rows*mFeatures.Stride()*sizeof(BaseFloat));
memcpy(mDesired.pData()+mIntakePos*mDesired.Stride(),
rDesired.pData(),
fill_rows*mDesired.Stride()*sizeof(BaseFloat));
//copy leftovers
if(leftover > 0) {
mFeaturesLeftover.Init(leftover,mFeatures.Cols());
mDesiredLeftover.Init(leftover,mDesired.Cols());
memcpy(mFeaturesLeftover.pData(),
rFeatures.pData()+fill_rows*rFeatures.Stride(),
mFeaturesLeftover.MSize());
memcpy(mDesiredLeftover.pData(),
rDesired.pData()+fill_rows*rDesired.Stride(),
mDesiredLeftover.MSize());
}
//update cursor
mIntakePos += fill_rows;
//change state
if(mIntakePos == mCachesize) {
if(mTrace&3) std::cout << "\\" << std::flush;
mState = FULL;
}
}
void
Cache::
Randomize()
{
assert(mState == FULL || mState == INTAKE);
if(mTrace&3) std::cout << "R" << std::flush;
//lazy initialization of the output buffers
mFeaturesRandom.Init(mCachesize,mFeatures.Cols());
mDesiredRandom.Init(mCachesize,mDesired.Cols());
//generate random series of integers
Vector<int> randmask(mIntakePos);
for(unsigned int i=0; i<mIntakePos; i++) {
randmask[i]=i;
}
int* ptr = randmask.pData();
std::random_shuffle(ptr, ptr+mIntakePos, GenerateRandom);
//randomize
for(int i=0; i<randmask.Dim(); i++) {
mFeaturesRandom[i].Copy(mFeatures[randmask[i]]);
mDesiredRandom[i].Copy(mDesired[randmask[i]]);
}
mRandomized = true;
}
void
Cache::
GetBunch(Matrix<BaseFloat>& rFeatures, Matrix<BaseFloat>& rDesired)
{
if(mState == EMPTY) {
Error("GetBunch on empty cache!!!");
}
//change state if full...
if(mState == FULL) {
if(mTrace&3) std::cout << "\\" << std::flush;
mState = EXHAUST; mExhaustPos = 0;
}
//final cache is not completely filled
if(mState == INTAKE) {
if(mTrace&3) std::cout << "\\-LAST_CACHE\n" << std::flush;
mState = EXHAUST; mExhaustPos = 0;
}
assert(mState == EXHAUST);
//init the output
if(rFeatures.Rows()!=mBunchsize || rFeatures.Cols()!=mFeatures.Cols()) {
rFeatures.Init(mBunchsize,mFeatures.Cols());
}
if(rDesired.Rows()!=mBunchsize || rDesired.Cols()!=mDesired.Cols()) {
rDesired.Init(mBunchsize,mDesired.Cols());
}
//copy the output
if(mRandomized) {
memcpy(rFeatures.pData(),
mFeaturesRandom.pData()+mExhaustPos*mFeatures.Stride(),
rFeatures.MSize());
memcpy(rDesired.pData(),
mDesiredRandom.pData()+mExhaustPos*mDesired.Stride(),
rDesired.MSize());
} else {
memcpy(rFeatures.pData(),
mFeatures.pData()+mExhaustPos*mFeatures.Stride(),
rFeatures.MSize());
memcpy(rDesired.pData(),
mDesired.pData()+mExhaustPos*mDesired.Stride(),
rDesired.MSize());
}
//update cursor
mExhaustPos += mBunchsize;
//change state to EMPTY
if(mExhaustPos > mIntakePos-mBunchsize) {
//we don't have more complete bunches...
mDiscarded += mIntakePos - mExhaustPos;
mState = EMPTY;
}
}
}
|