summaryrefslogtreecommitdiff
path: root/chill/src/loop_tile.cc
diff options
context:
space:
mode:
Diffstat (limited to 'chill/src/loop_tile.cc')
-rw-r--r--chill/src/loop_tile.cc630
1 files changed, 630 insertions, 0 deletions
diff --git a/chill/src/loop_tile.cc b/chill/src/loop_tile.cc
new file mode 100644
index 0000000..ad1d3b7
--- /dev/null
+++ b/chill/src/loop_tile.cc
@@ -0,0 +1,630 @@
+/*
+ * loop_tile.cc
+ *
+ * Created on: Nov 12, 2012
+ * Author: anand
+ */
+
+#include <codegen.h>
+#include "loop.hh"
+#include "omegatools.hh"
+#include "ir_code.hh"
+#include "chill_error.hh"
+
+using namespace omega;
+
+
+
+
+void Loop::tile(int stmt_num, int level, int tile_size, int outer_level,
+ TilingMethodType method, int alignment_offset, int alignment_multiple) {
+ // check for sanity of parameters
+ if (tile_size < 0)
+ throw std::invalid_argument("invalid tile size");
+ if (alignment_multiple < 1 || alignment_offset < 0)
+ throw std::invalid_argument("invalid alignment for tile");
+ if (stmt_num < 0 || stmt_num >= stmt.size())
+ throw std::invalid_argument("invalid statement " + to_string(stmt_num));
+ if (level <= 0)
+ throw std::invalid_argument("invalid loop level " + to_string(level));
+ if (level > stmt[stmt_num].loop_level.size())
+ throw std::invalid_argument(
+ "there is no loop level " + to_string(level) + " for statement "
+ + to_string(stmt_num));
+ if (outer_level <= 0 || outer_level > level)
+ throw std::invalid_argument(
+ "invalid tile controlling loop level "
+ + to_string(outer_level));
+
+ // invalidate saved codegen computation
+ delete last_compute_cgr_;
+ last_compute_cgr_ = NULL;
+ delete last_compute_cg_;
+ last_compute_cg_ = NULL;
+
+ int dim = 2 * level - 1;
+ int outer_dim = 2 * outer_level - 1;
+ std::vector<int> lex = getLexicalOrder(stmt_num);
+ std::set<int> same_tiled_loop = getStatements(lex, dim - 1);
+ std::set<int> same_tile_controlling_loop = getStatements(lex,
+ outer_dim - 1);
+
+ for (std::set<int>::iterator i = same_tiled_loop.begin();
+ i != same_tiled_loop.end(); i++) {
+ for (DependenceGraph::EdgeList::iterator j =
+ dep.vertex[*i].second.begin(); j != dep.vertex[*i].second.end();
+ j++) {
+ if (same_tiled_loop.find(j->first) != same_tiled_loop.end())
+ for (int k = 0; k < j->second.size(); k++) {
+ DependenceVector dv = j->second[k];
+ int dim2 = level - 1;
+ if ((dv.type != DEP_CONTROL) && (dv.type != DEP_UNKNOWN)) {
+ while (stmt[*i].loop_level[dim2].type == LoopLevelTile) {
+ dim2 = stmt[*i].loop_level[dim2].payload - 1;
+ }
+ dim2 = stmt[*i].loop_level[dim2].payload;
+
+ if (dv.hasNegative(dim2) && (!dv.quasi)) {
+ for (int l = outer_level; l < level; l++)
+ if (stmt[*i].loop_level[l - 1].type
+ != LoopLevelTile) {
+ if (dv.isCarried(
+ stmt[*i].loop_level[l - 1].payload)
+ && dv.hasPositive(
+ stmt[*i].loop_level[l - 1].payload))
+ throw loop_error(
+ "loop error: Tiling is illegal, dependence violation!");
+ } else {
+
+ int dim3 = l - 1;
+ while (stmt[*i].loop_level[l - 1].type
+ != LoopLevelTile) {
+ dim3 =
+ stmt[*i].loop_level[l - 1].payload
+ - 1;
+
+ }
+
+ dim3 = stmt[*i].loop_level[l - 1].payload;
+ if (dim3 < level - 1)
+ if (dv.isCarried(dim3)
+ && dv.hasPositive(dim3))
+ throw loop_error(
+ "loop error: Tiling is illegal, dependence violation!");
+ }
+ }
+ }
+ }
+ }
+ }
+ // special case for no tiling
+ if (tile_size == 0) {
+ for (std::set<int>::iterator i = same_tile_controlling_loop.begin();
+ i != same_tile_controlling_loop.end(); i++) {
+ Relation r(stmt[*i].xform.n_out(), stmt[*i].xform.n_out() + 2);
+ F_And *f_root = r.add_and();
+ for (int j = 1; j <= 2 * outer_level - 1; j++) {
+ EQ_Handle h = f_root->add_EQ();
+ h.update_coef(r.input_var(j), 1);
+ h.update_coef(r.output_var(j), -1);
+ }
+ EQ_Handle h1 = f_root->add_EQ();
+ h1.update_coef(r.output_var(2 * outer_level), 1);
+ EQ_Handle h2 = f_root->add_EQ();
+ h2.update_coef(r.output_var(2 * outer_level + 1), 1);
+ for (int j = 2 * outer_level; j <= stmt[*i].xform.n_out(); j++) {
+ EQ_Handle h = f_root->add_EQ();
+ h.update_coef(r.input_var(j), 1);
+ h.update_coef(r.output_var(j + 2), -1);
+ }
+
+ stmt[*i].xform = Composition(copy(r), stmt[*i].xform);
+ }
+ }
+ // normal tiling
+ else {
+ std::set<int> private_stmt;
+ for (std::set<int>::iterator i = same_tile_controlling_loop.begin();
+ i != same_tile_controlling_loop.end(); i++) {
+// if (same_tiled_loop.find(*i) == same_tiled_loop.end() && !is_single_iteration(getNewIS(*i), dim))
+// same_tiled_loop.insert(*i);
+
+ // should test dim's value directly but it is ok for now
+// if (same_tiled_loop.find(*i) == same_tiled_loop.end() && get_const(stmt[*i].xform, dim+1, Output_Var) == posInfinity)
+ if (same_tiled_loop.find(*i) == same_tiled_loop.end()
+ && overflow.find(*i) != overflow.end())
+ private_stmt.insert(*i);
+ }
+
+ // extract the union of the iteration space to be considered
+ Relation hull;
+ /*{
+ Tuple < Relation > r_list;
+ Tuple<int> r_mask;
+
+ for (std::set<int>::iterator i = same_tile_controlling_loop.begin();
+ i != same_tile_controlling_loop.end(); i++)
+ if (private_stmt.find(*i) == private_stmt.end()) {
+ Relation r = project_onto_levels(getNewIS(*i), dim + 1,
+ true);
+ for (int j = outer_dim; j < dim; j++)
+ r = Project(r, j + 1, Set_Var);
+ for (int j = 0; j < outer_dim; j += 2)
+ r = Project(r, j + 1, Set_Var);
+ r_list.append(r);
+ r_mask.append(1);
+ }
+
+ hull = Hull(r_list, r_mask, 1, true);
+ }*/
+
+ {
+ std::vector<Relation> r_list;
+
+ for (std::set<int>::iterator i = same_tile_controlling_loop.begin();
+ i != same_tile_controlling_loop.end(); i++)
+ if (private_stmt.find(*i) == private_stmt.end()) {
+ Relation r = getNewIS(*i);
+ for (int j = dim + 2; j <= r.n_set(); j++)
+ r = Project(r, r.set_var(j));
+ for (int j = outer_dim; j < dim; j++)
+ r = Project(r, j + 1, Set_Var);
+ for (int j = 0; j < outer_dim; j += 2)
+ r = Project(r, j + 1, Set_Var);
+ r.simplify(2, 4);
+ r_list.push_back(r);
+ }
+
+ hull = SimpleHull(r_list);
+ // hull = Hull(r_list, std::vector<bool>(r_list.size(), true), 1, true);
+ }
+
+ // extract the bound of the dimension to be tiled
+ Relation bound = get_loop_bound(hull, dim);
+ if (!bound.has_single_conjunct()) {
+ // further simplify the bound
+ hull = Approximate(hull);
+ bound = get_loop_bound(hull, dim);
+
+ int i = outer_dim - 2;
+ while (!bound.has_single_conjunct() && i >= 0) {
+ hull = Project(hull, i + 1, Set_Var);
+ bound = get_loop_bound(hull, dim);
+ i -= 2;
+ }
+
+ if (!bound.has_single_conjunct())
+ throw loop_error("cannot handle tile bounds");
+ }
+
+ // separate lower and upper bounds
+ std::vector<GEQ_Handle> lb_list, ub_list;
+ {
+ Conjunct *c = bound.query_DNF()->single_conjunct();
+ for (GEQ_Iterator gi(c->GEQs()); gi; gi++) {
+ int coef = (*gi).get_coef(bound.set_var(dim + 1));
+ if (coef < 0)
+ ub_list.push_back(*gi);
+ else if (coef > 0)
+ lb_list.push_back(*gi);
+ }
+ }
+ if (lb_list.size() == 0)
+ throw loop_error(
+ "unable to calculate tile controlling loop lower bound");
+ if (ub_list.size() == 0)
+ throw loop_error(
+ "unable to calculate tile controlling loop upper bound");
+
+ // find the simplest lower bound for StridedTile or simplest iteration count for CountedTile
+ int simplest_lb = 0, simplest_ub = 0;
+ if (method == StridedTile) {
+ int best_cost = INT_MAX;
+ for (int i = 0; i < lb_list.size(); i++) {
+ int cost = 0;
+ for (Constr_Vars_Iter ci(lb_list[i]); ci; ci++) {
+ switch ((*ci).var->kind()) {
+ case Input_Var: {
+ cost += 5;
+ break;
+ }
+ case Global_Var: {
+ cost += 2;
+ break;
+ }
+ default:
+ cost += 15;
+ break;
+ }
+ }
+
+ if (cost < best_cost) {
+ best_cost = cost;
+ simplest_lb = i;
+ }
+ }
+ } else if (method == CountedTile) {
+ std::map<Variable_ID, coef_t> s1, s2, s3;
+ int best_cost = INT_MAX;
+ for (int i = 0; i < lb_list.size(); i++)
+ for (int j = 0; j < ub_list.size(); j++) {
+ int cost = 0;
+
+ for (Constr_Vars_Iter ci(lb_list[i]); ci; ci++) {
+ switch ((*ci).var->kind()) {
+ case Input_Var: {
+ s1[(*ci).var] += (*ci).coef;
+ break;
+ }
+ case Global_Var: {
+ s2[(*ci).var] += (*ci).coef;
+ break;
+ }
+ case Exists_Var:
+ case Wildcard_Var: {
+ s3[(*ci).var] += (*ci).coef;
+ break;
+ }
+ default:
+ cost = INT_MAX - 2;
+ break;
+ }
+ }
+
+ for (Constr_Vars_Iter ci(ub_list[j]); ci; ci++) {
+ switch ((*ci).var->kind()) {
+ case Input_Var: {
+ s1[(*ci).var] += (*ci).coef;
+ break;
+ }
+ case Global_Var: {
+ s2[(*ci).var] += (*ci).coef;
+ break;
+ }
+ case Exists_Var:
+ case Wildcard_Var: {
+ s3[(*ci).var] += (*ci).coef;
+ break;
+ }
+ default:
+ if (cost == INT_MAX - 2)
+ cost = INT_MAX - 1;
+ else
+ cost = INT_MAX - 3;
+ break;
+ }
+ }
+
+ if (cost == 0) {
+ for (std::map<Variable_ID, coef_t>::iterator k =
+ s1.begin(); k != s1.end(); k++)
+ if ((*k).second != 0)
+ cost += 5;
+ for (std::map<Variable_ID, coef_t>::iterator k =
+ s2.begin(); k != s2.end(); k++)
+ if ((*k).second != 0)
+ cost += 2;
+ for (std::map<Variable_ID, coef_t>::iterator k =
+ s3.begin(); k != s3.end(); k++)
+ if ((*k).second != 0)
+ cost += 15;
+ }
+
+ if (cost < best_cost) {
+ best_cost = cost;
+ simplest_lb = i;
+ simplest_ub = j;
+ }
+ }
+ }
+
+ // prepare the new transformation relations
+ for (std::set<int>::iterator i = same_tile_controlling_loop.begin();
+ i != same_tile_controlling_loop.end(); i++) {
+ Relation r(stmt[*i].xform.n_out(), stmt[*i].xform.n_out() + 2);
+ F_And *f_root = r.add_and();
+ for (int j = 0; j < outer_dim - 1; j++) {
+ EQ_Handle h = f_root->add_EQ();
+ h.update_coef(r.output_var(j + 1), 1);
+ h.update_coef(r.input_var(j + 1), -1);
+ }
+
+ for (int j = outer_dim - 1; j < stmt[*i].xform.n_out(); j++) {
+ EQ_Handle h = f_root->add_EQ();
+ h.update_coef(r.output_var(j + 3), 1);
+ h.update_coef(r.input_var(j + 1), -1);
+ }
+
+ EQ_Handle h = f_root->add_EQ();
+ h.update_coef(r.output_var(outer_dim), 1);
+ h.update_const(-lex[outer_dim - 1]);
+
+ stmt[*i].xform = Composition(r, stmt[*i].xform);
+ }
+
+ // add tiling constraints.
+ for (std::set<int>::iterator i = same_tile_controlling_loop.begin();
+ i != same_tile_controlling_loop.end(); i++) {
+ F_And *f_super_root = stmt[*i].xform.and_with_and();
+ F_Exists *f_exists = f_super_root->add_exists();
+ F_And *f_root = f_exists->add_and();
+
+ // create a lower bound variable for easy formula creation later
+ Variable_ID aligned_lb;
+ {
+ Variable_ID lb = f_exists->declare();
+ coef_t coef = lb_list[simplest_lb].get_coef(
+ bound.set_var(dim + 1));
+ if (coef == 1) { // e.g. if i >= m+5, then LB = m+5
+ EQ_Handle h = f_root->add_EQ();
+ h.update_coef(lb, 1);
+ for (Constr_Vars_Iter ci(lb_list[simplest_lb]); ci; ci++) {
+ switch ((*ci).var->kind()) {
+ case Input_Var: {
+ int pos = (*ci).var->get_position();
+ if (pos != dim + 1)
+ h.update_coef(stmt[*i].xform.output_var(pos),
+ (*ci).coef);
+ break;
+ }
+ case Global_Var: {
+ Global_Var_ID g = (*ci).var->get_global_var();
+ Variable_ID v;
+ if (g->arity() == 0)
+ v = stmt[*i].xform.get_local(g);
+ else
+ v = stmt[*i].xform.get_local(g,
+ (*ci).var->function_of());
+ h.update_coef(v, (*ci).coef);
+ break;
+ }
+ default:
+ throw loop_error("cannot handle tile bounds");
+ }
+ }
+ h.update_const(lb_list[simplest_lb].get_const());
+ } else { // e.g. if 2i >= m+5, then m+5 <= 2*LB < m+5+2
+ GEQ_Handle h1 = f_root->add_GEQ();
+ GEQ_Handle h2 = f_root->add_GEQ();
+ for (Constr_Vars_Iter ci(lb_list[simplest_lb]); ci; ci++) {
+ switch ((*ci).var->kind()) {
+ case Input_Var: {
+ int pos = (*ci).var->get_position();
+ if (pos == dim + 1) {
+ h1.update_coef(lb, (*ci).coef);
+ h2.update_coef(lb, -(*ci).coef);
+ } else {
+ h1.update_coef(stmt[*i].xform.output_var(pos),
+ (*ci).coef);
+ h2.update_coef(stmt[*i].xform.output_var(pos),
+ -(*ci).coef);
+ }
+ break;
+ }
+ case Global_Var: {
+ Global_Var_ID g = (*ci).var->get_global_var();
+ Variable_ID v;
+ if (g->arity() == 0)
+ v = stmt[*i].xform.get_local(g);
+ else
+ v = stmt[*i].xform.get_local(g,
+ (*ci).var->function_of());
+ h1.update_coef(v, (*ci).coef);
+ h2.update_coef(v, -(*ci).coef);
+ break;
+ }
+ default:
+ throw loop_error("cannot handle tile bounds");
+ }
+ }
+ h1.update_const(lb_list[simplest_lb].get_const());
+ h2.update_const(-lb_list[simplest_lb].get_const());
+ h2.update_const(coef - 1);
+ }
+
+ Variable_ID offset_lb;
+ if (alignment_offset == 0)
+ offset_lb = lb;
+ else {
+ EQ_Handle h = f_root->add_EQ();
+ offset_lb = f_exists->declare();
+ h.update_coef(offset_lb, 1);
+ h.update_coef(lb, -1);
+ h.update_const(alignment_offset);
+ }
+
+ if (alignment_multiple == 1) { // trivial
+ aligned_lb = offset_lb;
+ } else { // e.g. to align at 4, aligned_lb = 4*alpha && LB-4 < 4*alpha <= LB
+ aligned_lb = f_exists->declare();
+ Variable_ID e = f_exists->declare();
+
+ EQ_Handle h = f_root->add_EQ();
+ h.update_coef(aligned_lb, 1);
+ h.update_coef(e, -alignment_multiple);
+
+ GEQ_Handle h1 = f_root->add_GEQ();
+ GEQ_Handle h2 = f_root->add_GEQ();
+ h1.update_coef(e, alignment_multiple);
+ h2.update_coef(e, -alignment_multiple);
+ h1.update_coef(offset_lb, -1);
+ h2.update_coef(offset_lb, 1);
+ h1.update_const(alignment_multiple - 1);
+ }
+ }
+
+ // create an upper bound variable for easy formula creation later
+ Variable_ID ub = f_exists->declare();
+ {
+ coef_t coef = -ub_list[simplest_ub].get_coef(
+ bound.set_var(dim + 1));
+ if (coef == 1) { // e.g. if i <= m+5, then UB = m+5
+ EQ_Handle h = f_root->add_EQ();
+ h.update_coef(ub, -1);
+ for (Constr_Vars_Iter ci(ub_list[simplest_ub]); ci; ci++) {
+ switch ((*ci).var->kind()) {
+ case Input_Var: {
+ int pos = (*ci).var->get_position();
+ if (pos != dim + 1)
+ h.update_coef(stmt[*i].xform.output_var(pos),
+ (*ci).coef);
+ break;
+ }
+ case Global_Var: {
+ Global_Var_ID g = (*ci).var->get_global_var();
+ Variable_ID v;
+ if (g->arity() == 0)
+ v = stmt[*i].xform.get_local(g);
+ else
+ v = stmt[*i].xform.get_local(g,
+ (*ci).var->function_of());
+ h.update_coef(v, (*ci).coef);
+ break;
+ }
+ default:
+ throw loop_error("cannot handle tile bounds");
+ }
+ }
+ h.update_const(ub_list[simplest_ub].get_const());
+ } else { // e.g. if 2i <= m+5, then m+5-2 < 2*UB <= m+5
+ GEQ_Handle h1 = f_root->add_GEQ();
+ GEQ_Handle h2 = f_root->add_GEQ();
+ for (Constr_Vars_Iter ci(ub_list[simplest_ub]); ci; ci++) {
+ switch ((*ci).var->kind()) {
+ case Input_Var: {
+ int pos = (*ci).var->get_position();
+ if (pos == dim + 1) {
+ h1.update_coef(ub, -(*ci).coef);
+ h2.update_coef(ub, (*ci).coef);
+ } else {
+ h1.update_coef(stmt[*i].xform.output_var(pos),
+ -(*ci).coef);
+ h2.update_coef(stmt[*i].xform.output_var(pos),
+ (*ci).coef);
+ }
+ break;
+ }
+ case Global_Var: {
+ Global_Var_ID g = (*ci).var->get_global_var();
+ Variable_ID v;
+ if (g->arity() == 0)
+ v = stmt[*i].xform.get_local(g);
+ else
+ v = stmt[*i].xform.get_local(g,
+ (*ci).var->function_of());
+ h1.update_coef(v, -(*ci).coef);
+ h2.update_coef(v, (*ci).coef);
+ break;
+ }
+ default:
+ throw loop_error("cannot handle tile bounds");
+ }
+ }
+ h1.update_const(-ub_list[simplest_ub].get_const());
+ h2.update_const(ub_list[simplest_ub].get_const());
+ h1.update_const(coef - 1);
+ }
+ }
+
+ // insert tile controlling loop constraints
+ if (method == StridedTile) { // e.g. ii = LB + 32 * alpha && alpha >= 0
+ Variable_ID e = f_exists->declare();
+ GEQ_Handle h1 = f_root->add_GEQ();
+ h1.update_coef(e, 1);
+
+ EQ_Handle h2 = f_root->add_EQ();
+ h2.update_coef(stmt[*i].xform.output_var(outer_dim + 1), 1);
+ h2.update_coef(e, -tile_size);
+ h2.update_coef(aligned_lb, -1);
+ } else if (method == CountedTile) { // e.g. 0 <= ii < ceiling((UB-LB+1)/32)
+ GEQ_Handle h1 = f_root->add_GEQ();
+ h1.update_coef(stmt[*i].xform.output_var(outer_dim + 1), 1);
+
+ GEQ_Handle h2 = f_root->add_GEQ();
+ h2.update_coef(stmt[*i].xform.output_var(outer_dim + 1),
+ -tile_size);
+ h2.update_coef(aligned_lb, -1);
+ h2.update_coef(ub, 1);
+ }
+
+ // special care for private statements like overflow assignment
+ if (private_stmt.find(*i) != private_stmt.end()) { // e.g. ii <= UB
+ GEQ_Handle h = f_root->add_GEQ();
+ h.update_coef(stmt[*i].xform.output_var(outer_dim + 1), -1);
+ h.update_coef(ub, 1);
+ }
+ // if (private_stmt.find(*i) != private_stmt.end()) {
+ // if (stmt[*i].xform.n_out() > dim+3) { // e.g. ii <= UB && i = ii
+ // GEQ_Handle h = f_root->add_GEQ();
+ // h.update_coef(stmt[*i].xform.output_var(outer_dim+1), -1);
+ // h.update_coef(ub, 1);
+
+ // stmt[*i].xform = Project(stmt[*i].xform, dim+3, Output_Var);
+ // f_root = stmt[*i].xform.and_with_and();
+ // EQ_Handle h1 = f_root->add_EQ();
+ // h1.update_coef(stmt[*i].xform.output_var(dim+3), 1);
+ // h1.update_coef(stmt[*i].xform.output_var(outer_dim+1), -1);
+ // }
+ // else if (method == StridedTile) { // e.g. ii <= UB since i does not exist
+ // GEQ_Handle h = f_root->add_GEQ();
+ // h.update_coef(stmt[*i].xform.output_var(outer_dim+1), -1);
+ // h.update_coef(ub, 1);
+ // }
+ // }
+
+ // restrict original loop index inside the tile
+ else {
+ if (method == StridedTile) { // e.g. ii <= i < ii + tile_size
+ GEQ_Handle h1 = f_root->add_GEQ();
+ h1.update_coef(stmt[*i].xform.output_var(dim + 3), 1);
+ h1.update_coef(stmt[*i].xform.output_var(outer_dim + 1),
+ -1);
+
+ GEQ_Handle h2 = f_root->add_GEQ();
+ h2.update_coef(stmt[*i].xform.output_var(dim + 3), -1);
+ h2.update_coef(stmt[*i].xform.output_var(outer_dim + 1), 1);
+ h2.update_const(tile_size - 1);
+ } else if (method == CountedTile) { // e.g. LB+32*ii <= i < LB+32*ii+tile_size
+ GEQ_Handle h1 = f_root->add_GEQ();
+ h1.update_coef(stmt[*i].xform.output_var(outer_dim + 1),
+ -tile_size);
+ h1.update_coef(stmt[*i].xform.output_var(dim + 3), 1);
+ h1.update_coef(aligned_lb, -1);
+
+ GEQ_Handle h2 = f_root->add_GEQ();
+ h2.update_coef(stmt[*i].xform.output_var(outer_dim + 1),
+ tile_size);
+ h2.update_coef(stmt[*i].xform.output_var(dim + 3), -1);
+ h2.update_const(tile_size - 1);
+ h2.update_coef(aligned_lb, 1);
+ }
+ }
+ }
+ }
+
+ // update loop level information
+ for (std::set<int>::iterator i = same_tile_controlling_loop.begin();
+ i != same_tile_controlling_loop.end(); i++) {
+ for (int j = 1; j <= stmt[*i].loop_level.size(); j++)
+ switch (stmt[*i].loop_level[j - 1].type) {
+ case LoopLevelOriginal:
+ break;
+ case LoopLevelTile:
+ if (stmt[*i].loop_level[j - 1].payload >= outer_level)
+ stmt[*i].loop_level[j - 1].payload++;
+ break;
+ default:
+ throw loop_error(
+ "unknown loop level type for statement "
+ + to_string(*i));
+ }
+
+ LoopLevel ll;
+ ll.type = LoopLevelTile;
+ ll.payload = level + 1;
+ ll.parallel_level = 0;
+ stmt[*i].loop_level.insert(
+ stmt[*i].loop_level.begin() + (outer_level - 1), ll);
+ }
+}
+