diff options
Diffstat (limited to 'omegalib/examples/old_test/ts1d-mp-i_ts-m_b')
-rw-r--r-- | omegalib/examples/old_test/ts1d-mp-i_ts-m_b | 289 |
1 files changed, 0 insertions, 289 deletions
diff --git a/omegalib/examples/old_test/ts1d-mp-i_ts-m_b b/omegalib/examples/old_test/ts1d-mp-i_ts-m_b deleted file mode 100644 index f288263..0000000 --- a/omegalib/examples/old_test/ts1d-mp-i_ts-m_b +++ /dev/null @@ -1,289 +0,0 @@ -# This is the file facts.prew, which is prepended to the .prew files -# for the particular code generation we want, defines things like the -# iteration space and dependences. Known facts are inserted by the -# Makefile. -# -# If you're looking at a .w file instead of facts.prew, then you should -# remember to edit the original .prew files, not the .w files. -# -# This facts.prew file describes the program -# -# for(i = 0; i <= N-1; i++) { -# cur[i]=... -# } -# for(t = 0; t < T; t++) { -# for(i = 0; i <= N-1; i++) { -# old[i]=cur[i]; -# } -# for(i = 1; i <= N-2; i++) { -# cur[i] = (old[i-1]+old[i]+old[i]+old[i+1])*0.25; -# } -# } - - - -# first, the spaces and memory maps - -symbolic T, N; - -IS_INIT := { [1,i,1,0,0] : 0<=i<=N-1 }; -MM_INIT := { [1,i,1,0,0] -> [0,i] : 0<=i<=N-1 }; - -IS_COPY := { [2,t,0,i,1] : 0<=t<T && 0<=i<=N-1 }; -MM_COPY := { [2,t,0,i,1] -> [t+1,i] : 0<=t<T && 0<=i<=N-1 }; - -IS_CALC := { [2,t,1,i,1] : 0<=t<T && 0< i< N-1 }; -MM_CALC := { [2,t,1,i,1] -> [t+1,i] : 0<=t<T && 0< i< N-1 }; - -RESULTS := { [3,0,0,0,0] }; - - -# memory-based Output and Flow/anti-dependences (among Assign (copy), and Calc) - -FWD5 := {[x,t,y,i,z] -> [x',t',y',i',z'] : - (x'>x) or - (x'=x and t'>t) or - (x'=x and t'=t and y'>y) or - (x'=x and t'=t and y'=y and i'>i) or - (x'=x and t'=t and y'=y and i'=i and z'>z) }; -FWD7 := {[x,t,y,i,z,a,b] -> [x',t',y',i',z',a',b'] : - (x'>x) or - (x'=x and t'>t) or - (x'=x and t'=t and y'>y) or - (x'=x and t'=t and y'=y and i'>i) or - (x'=x and t'=t and y'=y and i'=i and z'>z) or - (x'=x and t'=t and y'=y and i'=i and z'=z and a'>a) or - (x'=x and t'=t and y'=y and i'=i and z'=z and a'=a and b'>b) }; -BWD5 := inverse FWD5; -BWD7 := inverse FWD7; -EQi := {[x,t,y,i,z] -> [x',t',y',i',z'] : i'=i }; - -# output deps - -OAA := (IS_COPY * IS_COPY) intersection FWD5 intersection EQi; -OCC := (IS_CALC * IS_CALC) intersection FWD5 intersection EQi; - -# combined flow/anti deps - -FAC := (IS_COPY * IS_CALC) intersection FWD5 intersection {[2,t,0,i,1] -> [2,t',1,i',1] : (i'-1<=i<=i'+1)}; -FCA := (IS_CALC * IS_COPY) intersection FWD5 intersection {[2,t,1,i,1] -> [2,t',0,i',1] : (i-1<=i'<=i+1)}; - -# total memory deps in the "core" - -COREMEMDEPS := OAA union OCC union FAC union FCA; - - - -# data flow for original code: - -DF_12p1 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,0,0,i,1] : 0<i<N-1 }; -DF_12p2 := ( IS_INIT * IS_COPY ) intersection {[1,0,1,0,0] -> [2,t,0,0,1] }; -DF_12p3 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,t,0,i,1] : i=N-1 && N>1 }; -DF_32 := ( IS_CALC * IS_COPY ) intersection {[2,t,1,i,1] -> [2,t+1,0,i,1]}; - -DF_23a := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i+1,1] }; -DF_23b := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i,1] }; -DF_23c := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i-1,1] }; - - -# data flow for array expanded code, -# after forward substitution of "old[i] = cur[i]" - -DF1Ia := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; -DF1Ib := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t>0 && i=0 } restrictDomain IS_INIT restrictRange IS_CALC; -DF1C := { [2,t,1,i,1] -> [2,t+1,1,i+1,1] } restrictDomain IS_CALC restrictRange IS_CALC; -DF2I := { [1,i,1,0,0] -> [2,t,1,i,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; -DF2C := { [2,t,1,i,1] -> [2,t+1,1,i+0,1] } restrictDomain IS_CALC restrictRange IS_CALC; -DF3Ia := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC; -DF3Ib := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t>0 && i=N-1 } restrictDomain IS_INIT restrictRange IS_CALC; -DF3C := { [2,t,1,i,1] -> [2,t+1,1,i-1,1] } restrictDomain IS_CALC restrictRange IS_CALC; - -# total data flow - -COREDATAFLOW := DF1C union DF2C union DF3C; - - -# arity expansion relations -ex_0_5v := { [] -> [a,b,c,d,e] }; -ex_0_7v := { [] -> [a,b,c,d,e,f,g] }; -ex_3_5 := { [a,b,c] -> [a,b,c,0,0] }; -ex_3_7 := { [a,b,c] -> [a,b,c,0,0,0,0] }; -ex_5_7 := { [a,b,c,d,e] -> [a,b,c,d,e,0,0] }; - -ex_5_3 := { [a,b,c,0,0] -> [a,b,c] }; -ex_7_3 := { [a,b,c,0,0,0,0] -> [a,b,c] }; -ex_7_5 := { [a,b,c,d,e,0,0] -> [a,b,c,d,e] }; - - -# stuff used in skew and tskew - -# Here is the description of time skewing from the current draft of the paper. -IS_Trans := { [2,t,1,i,1] -> [2,tb,1,s,1,tt,1] : - 0<=tt<500 && s=i+1*t && t=500*tb+tt }; - -IS_Tinv := inverse IS_Trans; - -# We use it to transform the iteration spaces -TS_IS_CALC := IS_CALC join IS_Trans; -# for some reason OC refuses do to this "join" but will do the reverse: -# TS_IS_INIT := ex_7_5 join IS_INIT; -TS_IS_INIT := IS_INIT join (inverse ex_7_5); - -# Now we can update the data flow relations to correspond to the new I.S.'s -TS_DF1Ia := ex_7_5 join DF1Ia join IS_Trans; -TS_DF1Ib := ex_7_5 join DF1Ib join IS_Trans; -TS_DF1C := IS_Tinv join DF1C join IS_Trans; -TS_DF2I := ex_7_5 join DF2I join IS_Trans; -TS_DF2C := IS_Tinv join DF2C join IS_Trans; -TS_DF3Ia := ex_7_5 join DF3Ia join IS_Trans; -TS_DF3Ib := ex_7_5 join DF3Ib join IS_Trans; -TS_DF3C := IS_Tinv join DF3C join IS_Trans; - - -KNOWN := { [] : T >= 0 and N >= 4 }; - -# -# multiprocessor version -# time skewed iteration space -# blocked memory mapping -# - -# -# First of all, if 500 is much less than 4000, -# there's a problem with the constraints below. -# To keep send and recv. slices from "crashing", 4000>=2BS+2 (safe approx?) -# - -assertUnsatisfiable( { [] : 4000 < 2 * 500 + 2 } ); - -# this transformation has no existentially quantified variables; -# basically, it factors out the common stuff below, -# but the quantified variables are left in the output, so we can get them -# everything after the 000 is not needed in final xform - -# -# DANGER WILL ROBINSON! -# the .c file depends on the fact that t4 is always the processor number -# - -MP_TSKEW_ALL := { [2, t, 1, i, 1] -> - [2, tb, slice, proc, t+i, tt, 000, t, i, lproc, t0, i0, ie]: -## -## define time block and tt -## - 500*tb+tt = t and 0 <= tt < 500 -## -## define "logical proc", then "wrap" onto physical later: -## "logical proc" (lproc) = (t-i) div sigma -## - and 4000*lproc <= t-i < 4000*(lproc+1) -## -## for uniproc. test, just do proc = -lproc (for multi, proc = lproc % 8) -## - and proc = -lproc -## -## t0,i0 = first iteration in a block; -## t0,ie = maximum "i" in t0 of this block) -## - and t0=500*tb - and t0-ie=4000*lproc - and i0+4000-1=ie -}; - -# -# We need to send things "down" (to same time block of next proc.) -# and "right" (to next time block of next proc.) -# The "+2" is for the things to send right (not mentioned in IPDPS paper). -# - -MP_TSKEW_SEND_SL := MP_TSKEW_ALL join - { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> - [2, tb, 1, proc, t_p_i, tt, 0] : -## define send slice... - (t+i) <= (t0+(500-2) + i0+(500-1) + 2) -}; - -MP_TSKEW_SEND_ME := MP_TSKEW_ALL join - { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> - [2, tb, 2, proc, t_p_i, tt, 0] : -## in the send slice - (t+i) <= (t0+(500-2) + i0+(500-1) + 2) -## and near the (t-i) border: - and (t-i) >= ((t0-i0)-1) -}; - -MP_TSKEW_COMP_SL := MP_TSKEW_ALL join - { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> - [2, tb, 3, proc, t_p_i, tt, 0] : -## define computation slice... -## not send - (t+i) > (t0+(500-2) + i0+(500-1) + 2) -## and not recv - and (t+i) <= (t0+ie) -}; - - - -# Receive the iterations that we sent, -# but after the calculation, -# and on the neighbor (lower) processor - -MP_TSKEW_R_FROM_ME := MP_TSKEW_SEND_ME join - { [2, tb, 2, proc, t_p_i, tt, 0] -> - [2, tb, 4, proc-1, t_p_i, tt, 0] }; - - -MP_TSKEW_RECV_SL := MP_TSKEW_ALL join - { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> - [2, tb, 5, proc, t_p_i, tt, 0] : -## define recv slice... - (t+i) > (t0+ie) -}; - - - - -## stuff to gather each processor's final results... - -IS_GATHER := IS_CALC intersection { [2,t,1,i,1] : t=T-1 }; - -GATHER_EXPANDER := MP_TSKEW_ALL join - { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] -> - [3, tb, 7, proc, t_p_i, tt, 0] }; - -## stuff to initialize things right in the first place - -### NOTE THAT t4 (processor #) is used in a loop in initialization - -IS_INIT_EXP := { [1,t,i,0,0] : (-1=t && 0<=i<=N-1) || - (0<=t<T && 0=i) || - (0<=t<T && N-1=i) }; - - -# send_slice + calc_slice + recv slice == total - -TheSendIS := domain(MP_TSKEW_SEND_SL restrictDomain IS_CALC); -TheCompIS := domain(MP_TSKEW_COMP_SL restrictDomain IS_CALC); -TheRecvIS := domain(MP_TSKEW_RECV_SL restrictDomain IS_CALC); - -assertUnsatisfiable(TheSendIS intersection TheCompIS); -assertUnsatisfiable(TheCompIS intersection TheRecvIS); -assertUnsatisfiable(TheSendIS intersection TheRecvIS); -# -# These cause inexact negation and thus blow up... -# -# assertUnsatisfiable(IS_CALC - (TheSendIS union TheCompIS union TheRecvIS)); -# assertUnsatisfiable((TheSendIS union TheCompIS union TheRecvIS) - IS_CALC); - - - -codegen - ex_5_7 : IS_INIT_EXP, - MP_TSKEW_SEND_SL : IS_CALC, - MP_TSKEW_SEND_ME : IS_CALC, - MP_TSKEW_COMP_SL : IS_CALC, - MP_TSKEW_R_FROM_ME : IS_CALC, - MP_TSKEW_RECV_SL : IS_CALC, - GATHER_EXPANDER : IS_GATHER -given (KNOWN join ex_0_7v); - |