summaryrefslogtreecommitdiff
path: root/omegalib/examples/old_test/ts1d-mp-i_ts-m_b
diff options
context:
space:
mode:
Diffstat (limited to 'omegalib/examples/old_test/ts1d-mp-i_ts-m_b')
-rw-r--r--omegalib/examples/old_test/ts1d-mp-i_ts-m_b289
1 files changed, 0 insertions, 289 deletions
diff --git a/omegalib/examples/old_test/ts1d-mp-i_ts-m_b b/omegalib/examples/old_test/ts1d-mp-i_ts-m_b
deleted file mode 100644
index f288263..0000000
--- a/omegalib/examples/old_test/ts1d-mp-i_ts-m_b
+++ /dev/null
@@ -1,289 +0,0 @@
-# This is the file facts.prew, which is prepended to the .prew files
-# for the particular code generation we want, defines things like the
-# iteration space and dependences. Known facts are inserted by the
-# Makefile.
-#
-# If you're looking at a .w file instead of facts.prew, then you should
-# remember to edit the original .prew files, not the .w files.
-#
-# This facts.prew file describes the program
-#
-# for(i = 0; i <= N-1; i++) {
-# cur[i]=...
-# }
-# for(t = 0; t < T; t++) {
-# for(i = 0; i <= N-1; i++) {
-# old[i]=cur[i];
-# }
-# for(i = 1; i <= N-2; i++) {
-# cur[i] = (old[i-1]+old[i]+old[i]+old[i+1])*0.25;
-# }
-# }
-
-
-
-# first, the spaces and memory maps
-
-symbolic T, N;
-
-IS_INIT := { [1,i,1,0,0] : 0<=i<=N-1 };
-MM_INIT := { [1,i,1,0,0] -> [0,i] : 0<=i<=N-1 };
-
-IS_COPY := { [2,t,0,i,1] : 0<=t<T && 0<=i<=N-1 };
-MM_COPY := { [2,t,0,i,1] -> [t+1,i] : 0<=t<T && 0<=i<=N-1 };
-
-IS_CALC := { [2,t,1,i,1] : 0<=t<T && 0< i< N-1 };
-MM_CALC := { [2,t,1,i,1] -> [t+1,i] : 0<=t<T && 0< i< N-1 };
-
-RESULTS := { [3,0,0,0,0] };
-
-
-# memory-based Output and Flow/anti-dependences (among Assign (copy), and Calc)
-
-FWD5 := {[x,t,y,i,z] -> [x',t',y',i',z'] :
- (x'>x) or
- (x'=x and t'>t) or
- (x'=x and t'=t and y'>y) or
- (x'=x and t'=t and y'=y and i'>i) or
- (x'=x and t'=t and y'=y and i'=i and z'>z) };
-FWD7 := {[x,t,y,i,z,a,b] -> [x',t',y',i',z',a',b'] :
- (x'>x) or
- (x'=x and t'>t) or
- (x'=x and t'=t and y'>y) or
- (x'=x and t'=t and y'=y and i'>i) or
- (x'=x and t'=t and y'=y and i'=i and z'>z) or
- (x'=x and t'=t and y'=y and i'=i and z'=z and a'>a) or
- (x'=x and t'=t and y'=y and i'=i and z'=z and a'=a and b'>b) };
-BWD5 := inverse FWD5;
-BWD7 := inverse FWD7;
-EQi := {[x,t,y,i,z] -> [x',t',y',i',z'] : i'=i };
-
-# output deps
-
-OAA := (IS_COPY * IS_COPY) intersection FWD5 intersection EQi;
-OCC := (IS_CALC * IS_CALC) intersection FWD5 intersection EQi;
-
-# combined flow/anti deps
-
-FAC := (IS_COPY * IS_CALC) intersection FWD5 intersection {[2,t,0,i,1] -> [2,t',1,i',1] : (i'-1<=i<=i'+1)};
-FCA := (IS_CALC * IS_COPY) intersection FWD5 intersection {[2,t,1,i,1] -> [2,t',0,i',1] : (i-1<=i'<=i+1)};
-
-# total memory deps in the "core"
-
-COREMEMDEPS := OAA union OCC union FAC union FCA;
-
-
-
-# data flow for original code:
-
-DF_12p1 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,0,0,i,1] : 0<i<N-1 };
-DF_12p2 := ( IS_INIT * IS_COPY ) intersection {[1,0,1,0,0] -> [2,t,0,0,1] };
-DF_12p3 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,t,0,i,1] : i=N-1 && N>1 };
-DF_32 := ( IS_CALC * IS_COPY ) intersection {[2,t,1,i,1] -> [2,t+1,0,i,1]};
-
-DF_23a := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i+1,1] };
-DF_23b := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i,1] };
-DF_23c := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i-1,1] };
-
-
-# data flow for array expanded code,
-# after forward substitution of "old[i] = cur[i]"
-
-DF1Ia := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
-DF1Ib := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t>0 && i=0 } restrictDomain IS_INIT restrictRange IS_CALC;
-DF1C := { [2,t,1,i,1] -> [2,t+1,1,i+1,1] } restrictDomain IS_CALC restrictRange IS_CALC;
-DF2I := { [1,i,1,0,0] -> [2,t,1,i,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
-DF2C := { [2,t,1,i,1] -> [2,t+1,1,i+0,1] } restrictDomain IS_CALC restrictRange IS_CALC;
-DF3Ia := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
-DF3Ib := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t>0 && i=N-1 } restrictDomain IS_INIT restrictRange IS_CALC;
-DF3C := { [2,t,1,i,1] -> [2,t+1,1,i-1,1] } restrictDomain IS_CALC restrictRange IS_CALC;
-
-# total data flow
-
-COREDATAFLOW := DF1C union DF2C union DF3C;
-
-
-# arity expansion relations
-ex_0_5v := { [] -> [a,b,c,d,e] };
-ex_0_7v := { [] -> [a,b,c,d,e,f,g] };
-ex_3_5 := { [a,b,c] -> [a,b,c,0,0] };
-ex_3_7 := { [a,b,c] -> [a,b,c,0,0,0,0] };
-ex_5_7 := { [a,b,c,d,e] -> [a,b,c,d,e,0,0] };
-
-ex_5_3 := { [a,b,c,0,0] -> [a,b,c] };
-ex_7_3 := { [a,b,c,0,0,0,0] -> [a,b,c] };
-ex_7_5 := { [a,b,c,d,e,0,0] -> [a,b,c,d,e] };
-
-
-# stuff used in skew and tskew
-
-# Here is the description of time skewing from the current draft of the paper.
-IS_Trans := { [2,t,1,i,1] -> [2,tb,1,s,1,tt,1] :
- 0<=tt<500 && s=i+1*t && t=500*tb+tt };
-
-IS_Tinv := inverse IS_Trans;
-
-# We use it to transform the iteration spaces
-TS_IS_CALC := IS_CALC join IS_Trans;
-# for some reason OC refuses do to this "join" but will do the reverse:
-# TS_IS_INIT := ex_7_5 join IS_INIT;
-TS_IS_INIT := IS_INIT join (inverse ex_7_5);
-
-# Now we can update the data flow relations to correspond to the new I.S.'s
-TS_DF1Ia := ex_7_5 join DF1Ia join IS_Trans;
-TS_DF1Ib := ex_7_5 join DF1Ib join IS_Trans;
-TS_DF1C := IS_Tinv join DF1C join IS_Trans;
-TS_DF2I := ex_7_5 join DF2I join IS_Trans;
-TS_DF2C := IS_Tinv join DF2C join IS_Trans;
-TS_DF3Ia := ex_7_5 join DF3Ia join IS_Trans;
-TS_DF3Ib := ex_7_5 join DF3Ib join IS_Trans;
-TS_DF3C := IS_Tinv join DF3C join IS_Trans;
-
-
-KNOWN := { [] : T >= 0 and N >= 4 };
-
-#
-# multiprocessor version
-# time skewed iteration space
-# blocked memory mapping
-#
-
-#
-# First of all, if 500 is much less than 4000,
-# there's a problem with the constraints below.
-# To keep send and recv. slices from "crashing", 4000>=2BS+2 (safe approx?)
-#
-
-assertUnsatisfiable( { [] : 4000 < 2 * 500 + 2 } );
-
-# this transformation has no existentially quantified variables;
-# basically, it factors out the common stuff below,
-# but the quantified variables are left in the output, so we can get them
-# everything after the 000 is not needed in final xform
-
-#
-# DANGER WILL ROBINSON!
-# the .c file depends on the fact that t4 is always the processor number
-#
-
-MP_TSKEW_ALL := { [2, t, 1, i, 1] ->
- [2, tb, slice, proc, t+i, tt, 000, t, i, lproc, t0, i0, ie]:
-##
-## define time block and tt
-##
- 500*tb+tt = t and 0 <= tt < 500
-##
-## define "logical proc", then "wrap" onto physical later:
-## "logical proc" (lproc) = (t-i) div sigma
-##
- and 4000*lproc <= t-i < 4000*(lproc+1)
-##
-## for uniproc. test, just do proc = -lproc (for multi, proc = lproc % 8)
-##
- and proc = -lproc
-##
-## t0,i0 = first iteration in a block;
-## t0,ie = maximum "i" in t0 of this block)
-##
- and t0=500*tb
- and t0-ie=4000*lproc
- and i0+4000-1=ie
-};
-
-#
-# We need to send things "down" (to same time block of next proc.)
-# and "right" (to next time block of next proc.)
-# The "+2" is for the things to send right (not mentioned in IPDPS paper).
-#
-
-MP_TSKEW_SEND_SL := MP_TSKEW_ALL join
- { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
- [2, tb, 1, proc, t_p_i, tt, 0] :
-## define send slice...
- (t+i) <= (t0+(500-2) + i0+(500-1) + 2)
-};
-
-MP_TSKEW_SEND_ME := MP_TSKEW_ALL join
- { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
- [2, tb, 2, proc, t_p_i, tt, 0] :
-## in the send slice
- (t+i) <= (t0+(500-2) + i0+(500-1) + 2)
-## and near the (t-i) border:
- and (t-i) >= ((t0-i0)-1)
-};
-
-MP_TSKEW_COMP_SL := MP_TSKEW_ALL join
- { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
- [2, tb, 3, proc, t_p_i, tt, 0] :
-## define computation slice...
-## not send
- (t+i) > (t0+(500-2) + i0+(500-1) + 2)
-## and not recv
- and (t+i) <= (t0+ie)
-};
-
-
-
-# Receive the iterations that we sent,
-# but after the calculation,
-# and on the neighbor (lower) processor
-
-MP_TSKEW_R_FROM_ME := MP_TSKEW_SEND_ME join
- { [2, tb, 2, proc, t_p_i, tt, 0] ->
- [2, tb, 4, proc-1, t_p_i, tt, 0] };
-
-
-MP_TSKEW_RECV_SL := MP_TSKEW_ALL join
- { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
- [2, tb, 5, proc, t_p_i, tt, 0] :
-## define recv slice...
- (t+i) > (t0+ie)
-};
-
-
-
-
-## stuff to gather each processor's final results...
-
-IS_GATHER := IS_CALC intersection { [2,t,1,i,1] : t=T-1 };
-
-GATHER_EXPANDER := MP_TSKEW_ALL join
- { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
- [3, tb, 7, proc, t_p_i, tt, 0] };
-
-## stuff to initialize things right in the first place
-
-### NOTE THAT t4 (processor #) is used in a loop in initialization
-
-IS_INIT_EXP := { [1,t,i,0,0] : (-1=t && 0<=i<=N-1) ||
- (0<=t<T && 0=i) ||
- (0<=t<T && N-1=i) };
-
-
-# send_slice + calc_slice + recv slice == total
-
-TheSendIS := domain(MP_TSKEW_SEND_SL restrictDomain IS_CALC);
-TheCompIS := domain(MP_TSKEW_COMP_SL restrictDomain IS_CALC);
-TheRecvIS := domain(MP_TSKEW_RECV_SL restrictDomain IS_CALC);
-
-assertUnsatisfiable(TheSendIS intersection TheCompIS);
-assertUnsatisfiable(TheCompIS intersection TheRecvIS);
-assertUnsatisfiable(TheSendIS intersection TheRecvIS);
-#
-# These cause inexact negation and thus blow up...
-#
-# assertUnsatisfiable(IS_CALC - (TheSendIS union TheCompIS union TheRecvIS));
-# assertUnsatisfiable((TheSendIS union TheCompIS union TheRecvIS) - IS_CALC);
-
-
-
-codegen
- ex_5_7 : IS_INIT_EXP,
- MP_TSKEW_SEND_SL : IS_CALC,
- MP_TSKEW_SEND_ME : IS_CALC,
- MP_TSKEW_COMP_SL : IS_CALC,
- MP_TSKEW_R_FROM_ME : IS_CALC,
- MP_TSKEW_RECV_SL : IS_CALC,
- GATHER_EXPANDER : IS_GATHER
-given (KNOWN join ex_0_7v);
-