1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
#ifndef IRTOOLS_HH
#define IRTOOLS_HH
#include <vector>
#include <omega.h>
#include <code_gen/CG_outputRepr.h>
#include "ir_code.hh"
#include "dep.hh"
#define DEP_DEBUG 0
/*!
* \file
* \brief Useful tools to analyze code in compiler IR format.
*/
//! It is used to initialize a loop.
struct ir_tree_node {
IR_Control *content;
ir_tree_node *parent;
std::vector<ir_tree_node *> children;
/*!
* * For a loop node, payload is its mapped iteration space dimension.
* * For a simple block node, payload is its mapped statement number.
* * Normal if-else is splitted into two nodes
* * the one with odd payload represents then-part and
* * the one with even payload represents else-part.
*/
int payload;
~ir_tree_node() {
for (int i = 0; i < children.size(); i++)
delete children[i];
delete content;
}
};
/*!
* @brief Build IR tree from the source code
*
* Block type node can only be leaf, i.e., there is no further stuctures inside a block allowed
*
* @param control
* @param parent
* @return
*/
std::vector<ir_tree_node *> build_ir_tree(IR_Control *control,
ir_tree_node *parent = NULL);
/*!
* @brief Extract statements from IR tree
*
* Statements returned are ordered in lexical order in the source code
*
* @param ir_tree
* @return
*/
std::vector<ir_tree_node *> extract_ir_stmts(
const std::vector<ir_tree_node *> &ir_tree);
bool is_dependence_valid(ir_tree_node *src_node, ir_tree_node *dst_node,
const DependenceVector &dv, bool before);
/*!
* @brief test data dependeces between two statements
*
* The first statement in parameter must be lexically before the second statement in parameter.
* Returned dependences are all lexicographically positive
*
* @param ir
* @param repr1
* @param IS1
* @param repr2
* @param IS2
* @param freevar
* @param index
* @param i
* @param j
* @param uninterpreted_symbols
* @param uninterpreted_symbols_stringrepr
* @return
*/
std::pair<std::vector<DependenceVector>, std::vector<DependenceVector> > test_data_dependences(
IR_Code *ir, const omega::CG_outputRepr *repr1,
const omega::Relation &IS1, const omega::CG_outputRepr *repr2,
const omega::Relation &IS2, std::vector<omega::Free_Var_Decl *> &freevar,
std::vector<std::string> index, int i, int j,
std::map<std::string, std::vector<omega::CG_outputRepr *> > &uninterpreted_symbols,
std::map<std::string, std::vector<omega::CG_outputRepr *> > &uninterpreted_symbols_stringrepr);
std::vector<omega::CG_outputRepr *> collect_loop_inductive_and_conditionals(ir_tree_node *stmt_node);
// Manu
typedef std::map<int, std::pair<std::vector<DependenceVector>, std::vector<DependenceVector> > > tempResultMap;
typedef std::pair<std::vector<DependenceVector>, std::vector<DependenceVector> > DVPair;
// Manu:: this function is required for reduction operation
bool from_same_statement(IR_Code *ir, IR_ArrayRef *a, IR_ArrayRef *b);
int stmtType(IR_Code *ir, const omega::CG_outputRepr *repr);
IR_OPERATION_TYPE getReductionOperator(IR_Code *ir, const omega::CG_outputRepr *repr);
void
mapRefstoStatements(IR_Code *ir, std::vector<IR_ArrayRef *> access, int ref2Stmt[], std::map<int, std::set<int> > &rMap,
std::set<int> &tnrStmts, std::set<int> &nrStmts);
void
checkReductionDependence(int i, int j, int nestLeveli, omega::coef_t lbound[], omega::coef_t ubound[], int ref2Stmt[],
std::map<int, std::set<int> > &rMap, DVPair &dv, tempResultMap &trMap, std::set<int> nrStmts);
#endif
|