1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
# Omega Calculator v1.2 (based on Omega Library 1.2, August, 2000):
# # This is the file facts.prew, which is prepended to the .prew files
# # for the particular code generation we want, defines things like the
# # iteration space and dependences. Known facts are inserted by the
# # Makefile.
# #
# # If you're looking at a .w file instead of facts.prew, then you should
# # remember to edit the original .prew files, not the .w files.
# #
# # This facts.prew file describes the program
# #
# # for(i = 0; i <= N-1; i++) {
# # cur[i]=...
# # }
# # for(t = 0; t < T; t++) {
# # for(i = 0; i <= N-1; i++) {
# # old[i]=cur[i];
# # }
# # for(i = 1; i <= N-2; i++) {
# # cur[i] = (old[i-1]+old[i]+old[i]+old[i+1])*0.25;
# # }
# # }
#
#
#
# # first, the spaces and memory maps
#
# symbolic T, N;
#
#
# IS_INIT := { [1,i,1,0,0] : 0<=i<=N-1 };
#
# MM_INIT := { [1,i,1,0,0] -> [0,i] : 0<=i<=N-1 };
#
#
# IS_COPY := { [2,t,0,i,1] : 0<=t<T && 0<=i<=N-1 };
#
# MM_COPY := { [2,t,0,i,1] -> [t+1,i] : 0<=t<T && 0<=i<=N-1 };
#
#
# IS_CALC := { [2,t,1,i,1] : 0<=t<T && 0< i< N-1 };
#
# MM_CALC := { [2,t,1,i,1] -> [t+1,i] : 0<=t<T && 0< i< N-1 };
#
#
# RESULTS := { [3,0,0,0,0] };
#
#
#
# # memory-based Output and Flow/anti-dependences (among Assign (copy), and Calc)
#
# FWD5 := {[x,t,y,i,z] -> [x',t',y',i',z'] :
# (x'>x) or
# (x'=x and t'>t) or
# (x'=x and t'=t and y'>y) or
# (x'=x and t'=t and y'=y and i'>i) or
# (x'=x and t'=t and y'=y and i'=i and z'>z) };
#
# FWD7 := {[x,t,y,i,z,a,b] -> [x',t',y',i',z',a',b'] :
# (x'>x) or
# (x'=x and t'>t) or
# (x'=x and t'=t and y'>y) or
# (x'=x and t'=t and y'=y and i'>i) or
# (x'=x and t'=t and y'=y and i'=i and z'>z) or
# (x'=x and t'=t and y'=y and i'=i and z'=z and a'>a) or
# (x'=x and t'=t and y'=y and i'=i and z'=z and a'=a and b'>b) };
#
# BWD5 := inverse FWD5;
#
# BWD7 := inverse FWD7;
#
# EQi := {[x,t,y,i,z] -> [x',t',y',i',z'] : i'=i };
#
#
# # output deps
#
# OAA := (IS_COPY * IS_COPY) intersection FWD5 intersection EQi;
#
# OCC := (IS_CALC * IS_CALC) intersection FWD5 intersection EQi;
#
#
# # combined flow/anti deps
#
# FAC := (IS_COPY * IS_CALC) intersection FWD5 intersection {[2,t,0,i,1] -> [2,t',1,i',1] : (i'-1<=i<=i'+1)};
#
# FCA := (IS_CALC * IS_COPY) intersection FWD5 intersection {[2,t,1,i,1] -> [2,t',0,i',1] : (i-1<=i'<=i+1)};
#
#
# # total memory deps in the "core"
#
# COREMEMDEPS := OAA union OCC union FAC union FCA;
#
#
#
#
# # data flow for original code:
#
# DF_12p1 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,0,0,i,1] : 0<i<N-1 };
#
# DF_12p2 := ( IS_INIT * IS_COPY ) intersection {[1,0,1,0,0] -> [2,t,0,0,1] };
#
# DF_12p3 := ( IS_INIT * IS_COPY ) intersection {[1,i,1,0,0] -> [2,t,0,i,1] : i=N-1 && N>1 };
#
# DF_32 := ( IS_CALC * IS_COPY ) intersection {[2,t,1,i,1] -> [2,t+1,0,i,1]};
#
#
# DF_23a := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i+1,1] };
#
# DF_23b := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i,1] };
#
# DF_23c := ( IS_COPY * IS_CALC ) intersection {[2,t,0,i,1] -> [2,t,1,i-1,1] };
#
#
#
# # data flow for array expanded code,
# # after forward substitution of "old[i] = cur[i]"
#
# DF1Ia := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
#
# DF1Ib := { [1,i,1,0,0] -> [2,t,1,i+1,1] : t>0 && i=0 } restrictDomain IS_INIT restrictRange IS_CALC;
#
# DF1C := { [2,t,1,i,1] -> [2,t+1,1,i+1,1] } restrictDomain IS_CALC restrictRange IS_CALC;
#
# DF2I := { [1,i,1,0,0] -> [2,t,1,i,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
#
# DF2C := { [2,t,1,i,1] -> [2,t+1,1,i+0,1] } restrictDomain IS_CALC restrictRange IS_CALC;
#
# DF3Ia := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t=0 } restrictDomain IS_INIT restrictRange IS_CALC;
#
# DF3Ib := { [1,i,1,0,0] -> [2,t,1,i-1,1] : t>0 && i=N-1 } restrictDomain IS_INIT restrictRange IS_CALC;
#
# DF3C := { [2,t,1,i,1] -> [2,t+1,1,i-1,1] } restrictDomain IS_CALC restrictRange IS_CALC;
#
#
# # total data flow
#
# COREDATAFLOW := DF1C union DF2C union DF3C;
#
#
#
# # arity expansion relations
# ex_0_5v := { [] -> [a,b,c,d,e] };
#
# ex_0_7v := { [] -> [a,b,c,d,e,f,g] };
#
# ex_3_5 := { [a,b,c] -> [a,b,c,0,0] };
#
# ex_3_7 := { [a,b,c] -> [a,b,c,0,0,0,0] };
#
# ex_5_7 := { [a,b,c,d,e] -> [a,b,c,d,e,0,0] };
#
#
# ex_5_3 := { [a,b,c,0,0] -> [a,b,c] };
#
# ex_7_3 := { [a,b,c,0,0,0,0] -> [a,b,c] };
#
# ex_7_5 := { [a,b,c,d,e,0,0] -> [a,b,c,d,e] };
#
#
#
# # stuff used in skew and tskew
#
# # Here is the description of time skewing from the current draft of the paper.
# IS_Trans := { [2,t,1,i,1] -> [2,tb,1,s,1,tt,1] :
# 0<=tt<500 && s=i+1*t && t=500*tb+tt };
#
#
# IS_Tinv := inverse IS_Trans;
#
#
# # We use it to transform the iteration spaces
# TS_IS_CALC := IS_CALC join IS_Trans;
#
# # for some reason OC refuses do to this "join" but will do the reverse:
# # TS_IS_INIT := ex_7_5 join IS_INIT;
# TS_IS_INIT := IS_INIT join (inverse ex_7_5);
#
#
# # Now we can update the data flow relations to correspond to the new I.S.'s
# TS_DF1Ia := ex_7_5 join DF1Ia join IS_Trans;
#
# TS_DF1Ib := ex_7_5 join DF1Ib join IS_Trans;
#
# TS_DF1C := IS_Tinv join DF1C join IS_Trans;
#
# TS_DF2I := ex_7_5 join DF2I join IS_Trans;
#
# TS_DF2C := IS_Tinv join DF2C join IS_Trans;
#
# TS_DF3Ia := ex_7_5 join DF3Ia join IS_Trans;
#
# TS_DF3Ib := ex_7_5 join DF3Ib join IS_Trans;
#
# TS_DF3C := IS_Tinv join DF3C join IS_Trans;
#
#
#
# KNOWN := { [] : T >= 0 and N >= 4 };
#
#
# #
# # multiprocessor version
# # time skewed iteration space
# # blocked memory mapping
# #
#
# #
# # First of all, if 500 is much less than 4000,
# # there's a problem with the constraints below.
# # To keep send and recv. slices from "crashing", 4000>=2BS+2 (safe approx?)
# #
#
# assertUnsatisfiable( { [] : 4000 < 2 * 500 + 2 } );
{ FALSE }
#
#
# # this transformation has no existentially quantified variables;
# # basically, it factors out the common stuff below,
# # but the quantified variables are left in the output, so we can get them
# # everything after the 000 is not needed in final xform
#
# #
# # DANGER WILL ROBINSON!
# # the .c file depends on the fact that t4 is always the processor number
# #
#
# MP_TSKEW_ALL := { [2, t, 1, i, 1] ->
# [2, tb, slice, proc, t+i, tt, 000, t, i, lproc, t0, i0, ie]:
# ##
# ## define time block and tt
# ##
# 500*tb+tt = t and 0 <= tt < 500
# ##
# ## define "logical proc", then "wrap" onto physical later:
# ## "logical proc" (lproc) = (t-i) div sigma
# ##
# and 4000*lproc <= t-i < 4000*(lproc+1)
# ##
# ## for uniproc. test, just do proc = -lproc (for multi, proc = lproc % 8)
# ##
# and proc = -lproc
# ##
# ## t0,i0 = first iteration in a block;
# ## t0,ie = maximum "i" in t0 of this block)
# ##
# and t0=500*tb
# and t0-ie=4000*lproc
# and i0+4000-1=ie
# };
#
#
# #
# # We need to send things "down" (to same time block of next proc.)
# # and "right" (to next time block of next proc.)
# # The "+2" is for the things to send right (not mentioned in IPDPS paper).
# #
#
# MP_TSKEW_SEND_SL := MP_TSKEW_ALL join
# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# [2, tb, 1, proc, t_p_i, tt, 0] :
# ## define send slice...
# (t+i) <= (t0+(500-2) + i0+(500-1) + 2)
# };
#
#
# MP_TSKEW_SEND_ME := MP_TSKEW_ALL join
# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# [2, tb, 2, proc, t_p_i, tt, 0] :
# ## in the send slice
# (t+i) <= (t0+(500-2) + i0+(500-1) + 2)
# ## and near the (t-i) border:
# and (t-i) >= ((t0-i0)-1)
# };
#
#
# MP_TSKEW_COMP_SL := MP_TSKEW_ALL join
# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# [2, tb, 3, proc, t_p_i, tt, 0] :
# ## define computation slice...
# ## not send
# (t+i) > (t0+(500-2) + i0+(500-1) + 2)
# ## and not recv
# and (t+i) <= (t0+ie)
# };
#
#
#
#
# # Receive the iterations that we sent,
# # but after the calculation,
# # and on the neighbor (lower) processor
#
# MP_TSKEW_R_FROM_ME := MP_TSKEW_SEND_ME join
# { [2, tb, 2, proc, t_p_i, tt, 0] ->
# [2, tb, 4, proc-1, t_p_i, tt, 0] };
#
#
#
# MP_TSKEW_RECV_SL := MP_TSKEW_ALL join
# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# [2, tb, 5, proc, t_p_i, tt, 0] :
# ## define recv slice...
# (t+i) > (t0+ie)
# };
#
#
#
#
#
# ## stuff to gather each processor's final results...
#
# IS_GATHER := IS_CALC intersection { [2,t,1,i,1] : t=T-1 };
#
#
# GATHER_EXPANDER := MP_TSKEW_ALL join
# { [2, tb, slice, proc, t_p_i, tt, 000, t, i, lproc, t0, i0, ie] ->
# [3, tb, 7, proc, t_p_i, tt, 0] };
#
#
# ## stuff to initialize things right in the first place
#
# ### NOTE THAT t4 (processor #) is used in a loop in initialization
#
# IS_INIT_EXP := { [1,t,i,0,0] : (-1=t && 0<=i<=N-1) ||
# (0<=t<T && 0=i) ||
# (0<=t<T && N-1=i) };
#
#
#
# # send_slice + calc_slice + recv slice == total
#
# TheSendIS := domain(MP_TSKEW_SEND_SL restrictDomain IS_CALC);
#
# TheCompIS := domain(MP_TSKEW_COMP_SL restrictDomain IS_CALC);
#
# TheRecvIS := domain(MP_TSKEW_RECV_SL restrictDomain IS_CALC);
#
#
# assertUnsatisfiable(TheSendIS intersection TheCompIS);
{[In_1,t,In_3,i,In_5] : FALSE }
#
# assertUnsatisfiable(TheCompIS intersection TheRecvIS);
{[In_1,t,In_3,i,In_5] : FALSE }
#
# assertUnsatisfiable(TheSendIS intersection TheRecvIS);
{[In_1,t,In_3,i,In_5] : FALSE }
#
# #
# # These cause inexact negation and thus blow up...
# #
# # assertUnsatisfiable(IS_CALC - (TheSendIS union TheCompIS union TheRecvIS));
# # assertUnsatisfiable((TheSendIS union TheCompIS union TheRecvIS) - IS_CALC);
#
#
#
# codegen
# ex_5_7 : IS_INIT_EXP,
# MP_TSKEW_SEND_SL : IS_CALC,
# MP_TSKEW_SEND_ME : IS_CALC,
# MP_TSKEW_COMP_SL : IS_CALC,
# MP_TSKEW_R_FROM_ME : IS_CALC,
# MP_TSKEW_RECV_SL : IS_CALC,
# GATHER_EXPANDER : IS_GATHER
# given (KNOWN join ex_0_7v);
for(t3 = 0; t3 <= N-1; t3++) {
s1(1,-1,t3,0,0);
}
for(t2 = 0; t2 <= T-1; t2++) {
s1(1,t2,0,0,0);
s1(1,t2,N-1,0,0);
}
for(t2 = 0; t2 <= intDiv(T-1,500); t2++) {
for(t4 = intDiv(-t2+7+7,8); t4 <= intDiv(-500*t2+N+3997,4000); t4++) {
for(t5 = max(1000*t2+4000*t4-3999,500*t2+1); t5 <= min(1000*t2+4000*t4-3000,N+T-3,2*N-4000*t4+3995); t5++) {
for(t6 = max(-N+t5-500*t2+2,0); t6 <= min(t5-500*t2-1,T-500*t2-1,intDiv(t5-4000*t4-1000*t2+3999,2)); t6++) {
s2(2,500*t2+t6,1,t5+-500*t2-t6,1);
}
}
}
for(t4 = max(intDiv(-T+4000+3999,4000),intDiv(-t2+7+7,8)); t4 <= intDiv(-500*t2+N+3997,4000); t4++) {
for(t5 = max(1000*t2+4000*t4-3999,-4000*t4+4000); t5 <= min(1000*t2+4000*t4-3000,2*N-4000*t4+3995,2*T+4000*t4-4000); t5++) {
for(t6 = intDiv(t5-4000*t4-1000*t2+3998+1,2); t6 <= intDiv(t5-4000*t4-1000*t2+3999,2); t6++) {
s3(2,500*t2+t6,1,t5+-500*t2-t6,1);
}
}
}
for(t4 = intDiv(-t2+1+7,8); t4 <= min(intDiv(-500*t2+N+3496,4000),intDiv(-1000*t2+N+T+2996,4000)); t4++) {
for(t5 = max(500*t2+1,4000*t4+1000*t2-2999); t5 <= min(N+T-3,4000*t4+1000*t2,N+500*t2+497); t5++) {
for(t6 = max(-N+t5-500*t2+2,0); t6 <= min(T-500*t2-1,t5-500*t2-1,499); t6++) {
s4(2,500*t2+t6,1,t5+-500*t2-t6,1);
}
}
}
for(t4 = max(intDiv(-T+3999,4000),intDiv(-t2-1+7,8)); t4 <= intDiv(-500*t2+N-3,4000); t4++) {
for(t5 = max(1000*t2+4000*t4+1,-4000*t4); t5 <= min(1000*t2+4000*t4+1000,2*N-4000*t4-5,2*T+4000*t4); t5++) {
for(t6 = intDiv(-1000*t2-4000*t4+t5-2+1,2); t6 <= intDiv(-1000*t2-4000*t4+t5-1,2); t6++) {
s5(2,500*t2+t6,1,t5+-500*t2-t6,1);
}
}
}
if (500*t2 <= T-2) {
for(t4 = intDiv(-t2+7,8); t4 <= min(intDiv(-500*t2+N+496,4000),intDiv(-1000*t2+N+T-4,4000)); t4++) {
for(t5 = max(1000*t2+4000*t4+1,-4000*t4+2); t5 <= min(2*T+4000*t4-2,N+T-3,N+500*t2+497,1000*t2+4000*t4+998); t5++) {
for(t6 = max(-N+t5-500*t2+2,intDiv(t5-4000*t4-1000*t2+1,2)); t6 <= min(t5-500*t2-1,T-500*t2-1,499); t6++) {
s6(2,500*t2+t6,1,t5+-500*t2-t6,1);
}
}
}
}
}
if (T >= 1) {
for(t2 = intDiv(T-500+499,500); t2 <= intDiv(T-1,500); t2++) {
for(t4 = intDiv(-T+2+3999,4000); t4 <= intDiv(N-T+3998,4000); t4++) {
for(t5 = max(4000*t4+2*T-4001,T); t5 <= min(4000*t4+2*T-2,N+T-3); t5++) {
s7(2,T-1,1,t5-T+1,1);
}
}
}
}
#
#
|