1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
# Omega Calculator v1.2 (based on Omega Library 1.2, August, 2000):
# # do i = 1, np {
# # do j = 1, i {
# # ij = ia(i) + j
# # a = 1. / (i + j)
# # do k = 1, i {
# # maxl = k
# # if (k == i) then
# # maxl = j
# # endif
# # do l = 1, maxl {
# # kl = ia(k) + l
# # b = 1. / (k + l)
# # val = a + b
# # if (i == j) then
# # val = val * .5
# # endif
# # if (k == l) then
# # val = val * .5
# # endif
# # x(ij,kl) = val
# # x(kl,ij) = val
# # }
# # }
# # }
# # }
# #!
# #
# #
# # As far as I remember it was the dependence test between X(IJ,KL) and X(IJ,KL).
# #
# # Pips discovered the following precondition:
# #
#
# {[d1,d2,d3,d4] : exists ( NP,
# I,J,K,L,IJ,KJ,MAXL,
# I',J',K',L',IJ',KJ',MAXL' :
# I' = I+d1 &&
# J' = J+d2 &&
# K' = K+d3 &&
# L' = L+d4
# && 1<=L && 1<=J && MAXL<=K && I<=NP && NP<=40 && 10<=NP
# && 10+8K+MAXL<=NP+8I+J && 38K+MAXL<=38I+J
# && J+K<=I+MAXL && L<=MAXL
# && 1 <= J,K <= I <= NP && 1 <=L <= MAXL
#
# && 1<=L' && 1<=J' && MAXL'<=K' && I'<=NP && NP<=40 && 10<=NP
# && 10+8K'+MAXL'<=NP+8I'+J' && 38K'+MAXL'<=38I'+J'
# && J'+K'<=I'+MAXL' && L'<=MAXL'
# && 1 <= J',K' <= I' <= NP && 1 <=L' <= MAXL'
# )};
{[d1,d2,d3,d4]: d2-39, -39, d4-39, d3-39 <= d1 <= d3+39, d2+39, d4+39, 39 && d4-39, -39 <= d3 <= 39, d4+39 && -39 <= d2 <= 39 && 39d4 <= 1521+38d1+d2 && d3 <= 39+d1+d4 && d2 <= 1521+d1+38d3+d4 && 38d1+d2 <= 1521+39d4 && 38d1+d2 <= 1521+38d3+d4 && d2 <= 1521+d1+39d4 && d1+38d3+d4 <= 1521+d2 && d1+d4 <= 39+d3 && 38d3+d4 <= 1521+38d1+d2 && d1+39d4 <= 1521+d2}
#
#
|