1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
/* class Tuple */
// THESE FIRST TWO REALLY SHOULD BE INLINE BUT IT BREAKS CFRONT:
namespace omega {
template<class T> T &Tuple<T>::operator[](int index)
{
assert(1 <= index && index <= sz); return data[index-1];
}
template<class T> const T &Tuple<T>::operator[](int index) const
{
assert(1 <= index && index <= sz); return data[index-1];
}
template<class T> Tuple<T>::~Tuple()
{
if (data)
delete [] data;
}
template<class T> Tuple<T>::Tuple() : sz(0), alloc_sz(0),
prealloc_min(20),prealloc_pad(5), data(0)
{
// nothing needs be done
}
template<class T> Tuple<T>::Tuple(int size) : sz(size),
prealloc_min(20),prealloc_pad(5)
{
if (sz > 0)
{
alloc_sz = prealloc_size(sz);
data = new T[alloc_sz];
assert(alloc_sz >= sz);
//Need some handling for out of memory.
assert (data!=0);
}
else {
alloc_sz = 0;
data = 0;
}
}
template<class T> Tuple<T>::Tuple(const Tuple<T>& t)
: sz(t.sz), alloc_sz(t.alloc_sz), prealloc_min(20),prealloc_pad(5)
{
if (sz > 0) {
data = new T[alloc_sz];
assert (data!=0);
assert (alloc_sz >= sz);
for (int i=0; i<sz; i++)
data[i] = t.data[i];
} else {
data = 0;
alloc_sz = 0; // THis might not be 0 if it was a "clear"ed Tuple
// assert(alloc_sz == 0);
}
}
template<class T> Tuple<T>& Tuple<T>::operator=(const Tuple<T>& t)
{
if (this != &t) { // Delete this
if (data)
delete [] data;
sz = t.sz;
alloc_sz = t.alloc_sz;
assert(alloc_sz >= sz);
if (sz > 0) { // Copy old
data = new T[alloc_sz];
assert (data!=0);
for (int i=0; i<sz; i++)
data[i] = t.data[i];
} else {
data=0;
alloc_sz = 0; // THis might not be 0 if it was a "clear"ed Tuple
// assert(alloc_sz == 0);
}
}
return *this;
}
template<class T> void Tuple<T>::reallocate(const int req_size)
{
if (alloc_sz >= req_size) { // if (sz >= req_size), does this.
sz = req_size;
return;
}
alloc_sz = prealloc_size(req_size);
T* tmp_data = new T[alloc_sz];
for(int i=0;i<sz;i++)
tmp_data[i] = data[i];
delete [] data;
data = tmp_data;
sz = req_size;
assert(alloc_sz >= req_size);
}
template<class T> void Tuple<T>::delete_last()
{
assert(sz > 0);
sz --;
}
template<class T> void Tuple<T>::append(const T &v)
{
// Check if reallocation is necessary.
if (sz == 0) { // Empty Tuple
assert(alloc_sz >= 0); // May be nonzero for cleared tuple
if(alloc_sz == 0) { // If it's > 1 no allocation is necessary
alloc_sz = prealloc_size(1);
data = new T[alloc_sz];
}
assert (alloc_sz > 0 && data != 0);
} else {
if(sz == alloc_sz) { // Requires new allocation
alloc_sz = realloc_size(alloc_sz);
T * data_tmp = new T[alloc_sz];
assert (data_tmp!=0);
assert (alloc_sz > sz);
for (int i=0; i<sz; i++)
data_tmp[i] = data[i];
delete [] data;
data=data_tmp;
} // Otherwise big enough, no reallocation necessary
}
// Make assignment
assert(alloc_sz >= sz);
data[sz++] = v;
}
template<class T> void Tuple<T>::append(const Tuple<T>& t) {
int old_sz = sz;
reallocate(t.size()+size());
assert(alloc_sz >= sz);
for(int i=0; i<t.sz; i++)
data[i+old_sz] = t.data[i];
}
template<class T> void Tuple<T>::join(Tuple<T>& t) {
int old_sz = sz;
reallocate(t.size()+size());
assert(alloc_sz >= sz);
for(int i=0; i<t.sz; i++)
data[i+old_sz] = t.data[i];
t.clear();ation will not fail, it would generate the object file but it won't generate any code for the template class in the object file.
}
template<class T> void Tuple<T>::clear() { if (sz) delete [] data; data = 0; alloc_sz = 0; sz = 0; }
template<class T> int Tuple<T>::empty() const { return (sz == 0); }
template<class T> Iterator<T> *Tuple<T>::new_iterator()
{
return new Tuple_Iterator<T>(*this);
}
template<class T> int Tuple<T>::index(const T & var) const
/* returns index or 0 if var isn't in the tuple */
{
int i;
for (i=0; i<sz; i++)
if (data[i]== var)
return i+1;
return 0;
}
template<class T> bool Tuple<T>::operator == (const Tuple<T>& b) const
{
int i;
if (sz != b.size()) return false;
for (i=0; i<sz; i++)
if (!(data[i] == b[i+1])) return false;
return true;
}
/* class Tuple_Iterator */
template<class T> Tuple_Iterator<T>::Tuple_Iterator(const Tuple<T> &tpl) :
current(tpl.data), lastptr(tpl.data+tpl.sz-1), firstptr(tpl.data), sz(tpl.sz)
{
}
template<class T> Tuple_Iterator<T>::Tuple_Iterator(T * cr, T *frst, T * lst,
int insz)
: current(cr), lastptr(lst), firstptr(frst), sz(insz)
{
}
template<class T> const T & Tuple_Iterator<T>::operator*() const
{
assert (current<=lastptr && current>=firstptr);
return *current;
}
template<class T> T & Tuple_Iterator<T>::operator*()
{
assert (current<=lastptr && current >=firstptr);
return *current;
}
template<class T> void Tuple_Iterator<T>::operator++(int)
{
current++;
}
template<class T> void Tuple_Iterator<T>::operator++()
{
current++;
}
template<class T> void Tuple_Iterator<T>::operator--(int)
{
current--;
}
template<class T> void Tuple_Iterator<T>::operator--()
{
current--;
}
template<class T> void Tuple_Iterator<T>::set_to_last()
{
current = lastptr;
}
template<class T> void Tuple_Iterator<T>::set_to_first()
{
current = firstptr;
}
template<class T> void Tuple_Iterator<T>::set_position(const int req_pos)
{
assert(req_pos <= sz && 1 <= req_pos);
current = firstptr + (req_pos - 1);
}
template<class T> bool Tuple_Iterator<T>::live() const
{
return (current !=0 && current<=lastptr && current >= firstptr);
}
template<class T> Iterator<T> *Tuple_Iterator<T>::new_copy() const {
return new Tuple_Iterator<T>(current, firstptr, lastptr, sz);
}
} // namespace
|