summaryrefslogtreecommitdiff
path: root/ensemble.py
blob: fea3d6a5fb2b5093e97252f46812a1fcae144096 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from misc import *
import math

def onefold(inr,inm,tot,clist,folds,resm):

#inr="a.rid"
#resm="res.m"
#consts used
#clist=[0.0001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10, 100, 1000]

#folds=4
#tot=316
    step = tot // folds
#inm="0.m"

    ourb=inr
#splits
    print("splitting")
    for i in range(folds-1):
        inra=ourb
        oura="a%d.rid"%i
        ourb="b%d.rid"%i
        params = "-c %d -i %s -a %s -b %s" %(step,inra,oura,ourb)
        split(params)

    entries=['0','0']

    tmp=take("b0.rid")
    put("c0.rid",tmp)

    tmp=take("b%d.rid"%(folds-2))
    put("a%d.rid"%(folds-1),tmp)
    print("merging")
    for a in range(folds-1):
        tmp=take("a%d.rid"%a)
        entries = merge(tmp,entries)
            
        if a<folds-2:
            tmp=take("b%d.rid"%(a+1))
            tmp = merge(tmp,entries)
        else:
            tmp = entries;
            
        rid="c%d.rid" %(a+1)
        put(rid,tmp)

    for i in range(folds):
        entries = take("a%d.rid"%a)
        inra="c%d.rid"%i
        oura="a%d.rid"%i
        ourb="b%d.rid"%i
        params = "-c %d -i %s -a %s -b %s" %(step,inra,oura,ourb)
        split(params)
        entries = merge(take("a%d.rid"%a),entries)
    print("completed")
    wlist=[]
    mai=0
#train
    for i in range(folds):
        for c in clist:
            print("folds: %d ,c: %g"%(i,c))
            wlist.append("%d-%g"%(i,c))
            oum="%d-%g.m" % (i,c)
            rid = "a%d.rid"%i
            params = "-T -d -m %s -i %s -o %s -c %g" % (inm,rid,oum,c)
            train(params)
            oup="%d-%g.p"%(i,c)
            params = "-P -p -m %s -i %s -o %s" %(oum,inr,oup)
            bare(params)
            for p in getpred(oup):
                mai=max(abs(p),mai);

    mai=mai*2;

#inits
    D=getpred(oup)
    for i in range(len(D)):
        D[i]=1/len(D);
    mod=getmodel(oum);
    for i in range(len(mod)):
        mod[i]=0;

    while len(wlist)>0:
        low=1e20
        k=0
        P=[]
        #find best weak ranker
        for w in wlist:
            t=0
            pr=getpred(w+".p")
            for (d,p) in zip(D,pr):
                if p<=0:
                    t+=d
            if t<low:
                low=t
                k=w
                P=pr
        
        print(k)
        wlist.remove(k)
        # cal alpha
        r=0;
        for (d,p) in zip(D,P):
            r+=d*p;
        r=r/mai;
        a=0.5*math.log((1+r)/(1-r))
        
        #update model
        tmod=getmodel(k+".m")
        for i in range(len(mod)):
            mod[i]+=a*tmod[i];
        
        #update D
        for i in range(len(D)):
            D[i]=D[i]*math.exp(-a*P[i]);
        
        #normalize D
        acc=0;
        for d in D:
            acc+=d;
        
        for i in range(len(D)):
            D[i]/=acc;

#output model
    #print(mod)
    putmodel(resm,mod)