summaryrefslogtreecommitdiff
path: root/mlir/MLIRGen.cpp
diff options
context:
space:
mode:
authorTuowen Zhao <ztuowen@gmail.com>2019-04-27 19:05:25 -0600
committerTuowen Zhao <ztuowen@gmail.com>2019-04-27 19:05:25 -0600
commit0781257b2a8d544abdcce38824a9b8288a04800d (patch)
tree365cea96de343e354913f90b35fc944e4459b2e9 /mlir/MLIRGen.cpp
parent4127831a28e31ac53ffdb1d7e7a88dd7d6317c6e (diff)
downloadmlir-toy-0781257b2a8d544abdcce38824a9b8288a04800d.tar.gz
mlir-toy-0781257b2a8d544abdcce38824a9b8288a04800d.tar.bz2
mlir-toy-0781257b2a8d544abdcce38824a9b8288a04800d.zip
Split toy dialect using static registration
Diffstat (limited to 'mlir/MLIRGen.cpp')
-rw-r--r--mlir/MLIRGen.cpp480
1 files changed, 0 insertions, 480 deletions
diff --git a/mlir/MLIRGen.cpp b/mlir/MLIRGen.cpp
deleted file mode 100644
index e2001fb..0000000
--- a/mlir/MLIRGen.cpp
+++ /dev/null
@@ -1,480 +0,0 @@
-//===- MLIRGen.cpp - MLIR Generation from a Toy AST -----------------------===//
-//
-// Copyright 2019 The MLIR Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-// =============================================================================
-//
-// This file implements a simple IR generation targeting MLIR from a Module AST
-// for the Toy language.
-//
-//===----------------------------------------------------------------------===//
-
-#include "toy/MLIRGen.h"
-#include "toy/AST.h"
-#include "toy/Dialect.h"
-
-#include "mlir/IR/Attributes.h"
-#include "mlir/IR/Builders.h"
-#include "mlir/IR/Location.h"
-#include "mlir/IR/MLIRContext.h"
-#include "mlir/IR/Module.h"
-#include "mlir/IR/StandardTypes.h"
-#include "mlir/IR/Types.h"
-#include "mlir/StandardOps/Ops.h"
-
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/ScopedHashTable.h"
-#include "llvm/Support/raw_ostream.h"
-#include <numeric>
-
-using namespace toy;
-using llvm::cast;
-using llvm::dyn_cast;
-using llvm::isa;
-using llvm::make_unique;
-using llvm::ScopedHashTableScope;
-using llvm::SmallVector;
-using llvm::StringRef;
-using llvm::Twine;
-
-namespace {
-
-/// Implementation of a simple MLIR emission from the Toy AST.
-///
-/// This will emit operations that are specific to the Toy language, preserving
-/// the semantics of the language and (hopefully) allow to perform accurate
-/// analysis and transformation based on these high level semantics.
-///
-/// At this point we take advantage of the "raw" MLIR APIs to create operations
-/// that haven't been registered in any way with MLIR. These operations are
-/// unknown to MLIR, custom passes could operate by string-matching the name of
-/// these operations, but no other type checking or semantic is associated with
-/// them natively by MLIR.
-class MLIRGenImpl {
-public:
- MLIRGenImpl(mlir::MLIRContext &context) : context(context) {}
-
- /// Public API: convert the AST for a Toy module (source file) to an MLIR
- /// Module.
- std::unique_ptr<mlir::Module> mlirGen(ModuleAST &moduleAST) {
- // We create an empty MLIR module and codegen functions one at a time and
- // add them to the module.
- theModule = make_unique<mlir::Module>(&context);
-
- for (FunctionAST &F : moduleAST) {
- auto func = mlirGen(F);
- if (!func)
- return nullptr;
- theModule->getFunctions().push_back(func.release());
- }
-
- // FIXME: (in the next chapter...) without registering a dialect in MLIR,
- // this won't do much, but it should at least check some structural
- // properties.
- if (failed(theModule->verify())) {
- context.emitError(mlir::UnknownLoc::get(&context),
- "Module verification error");
- return nullptr;
- }
-
- return std::move(theModule);
- }
-
-private:
- /// In MLIR (like in LLVM) a "context" object holds the memory allocation and
- /// the ownership of many internal structure of the IR and provide a level
- /// of "uniquing" across multiple modules (types for instance).
- mlir::MLIRContext &context;
-
- /// A "module" matches a source file: it contains a list of functions.
- std::unique_ptr<mlir::Module> theModule;
-
- /// The builder is a helper class to create IR inside a function. It is
- /// re-initialized every time we enter a function and kept around as a
- /// convenience for emitting individual operations.
- /// The builder is stateful, in particular it keeeps an "insertion point":
- /// this is where the next operations will be introduced.
- std::unique_ptr<mlir::FuncBuilder> builder;
-
- /// The symbol table maps a variable name to a value in the current scope.
- /// Entering a function creates a new scope, and the function arguments are
- /// added to the mapping. When the processing of a function is terminated, the
- /// scope is destroyed and the mappings created in this scope are dropped.
- llvm::ScopedHashTable<StringRef, mlir::Value *> symbolTable;
-
- /// Helper conversion for a Toy AST location to an MLIR location.
- mlir::FileLineColLoc loc(Location loc) {
- return mlir::FileLineColLoc::get(
- mlir::UniquedFilename::get(*loc.file, &context), loc.line, loc.col,
- &context);
- }
-
- /// Declare a variable in the current scope, return true if the variable
- /// wasn't declared yet.
- bool declare(llvm::StringRef var, mlir::Value *value) {
- if (symbolTable.count(var)) {
- return false;
- }
- symbolTable.insert(var, value);
- return true;
- }
-
- /// Create the prototype for an MLIR function with as many arguments as the
- /// provided Toy AST prototype.
- mlir::Function *mlirGen(PrototypeAST &proto) {
- // This is a generic function, the return type will be inferred later.
- llvm::SmallVector<mlir::Type, 4> ret_types;
- // Arguments type is uniformly a generic array.
- llvm::SmallVector<mlir::Type, 4> arg_types(proto.getArgs().size(),
- getType(VarType{}));
- auto func_type = mlir::FunctionType::get(arg_types, ret_types, &context);
- auto *function = new mlir::Function(loc(proto.loc()), proto.getName(),
- func_type, /* attrs = */ {});
-
- // Mark the function as generic: it'll require type specialization for every
- // call site.
- if (function->getNumArguments())
- function->setAttr("toy.generic", mlir::BoolAttr::get(true, &context));
-
- return function;
- }
-
- /// Emit a new function and add it to the MLIR module.
- std::unique_ptr<mlir::Function> mlirGen(FunctionAST &funcAST) {
- // Create a scope in the symbol table to hold variable declarations.
- ScopedHashTableScope<llvm::StringRef, mlir::Value *> var_scope(symbolTable);
-
- // Create an MLIR function for the given prototype.
- std::unique_ptr<mlir::Function> function(mlirGen(*funcAST.getProto()));
- if (!function)
- return nullptr;
-
- // Let's start the body of the function now!
- // In MLIR the entry block of the function is special: it must have the same
- // argument list as the function itself.
- function->addEntryBlock();
-
- auto &entryBlock = function->front();
- auto &protoArgs = funcAST.getProto()->getArgs();
- // Declare all the function arguments in the symbol table.
- for (const auto &name_value :
- llvm::zip(protoArgs, entryBlock.getArguments())) {
- declare(std::get<0>(name_value)->getName(), std::get<1>(name_value));
- }
-
- // Create a builder for the function, it will be used throughout the codegen
- // to create operations in this function.
- builder = llvm::make_unique<mlir::FuncBuilder>(function.get());
-
- // Emit the body of the function.
- if (!mlirGen(*funcAST.getBody()))
- return nullptr;
-
- // Implicitly return void if no return statement was emited.
- // FIXME: we may fix the parser instead to always return the last expression
- // (this would possibly help the REPL case later)
- if (function->getBlocks().back().back().getName().getStringRef() !=
- "toy.return") {
- ReturnExprAST fakeRet(funcAST.getProto()->loc(), llvm::None);
- mlirGen(fakeRet);
- }
-
- return function;
- }
-
- /// Emit a binary operation
- mlir::Value *mlirGen(BinaryExprAST &binop) {
- // First emit the operations for each side of the operation before emitting
- // the operation itself. For example if the expression is `a + foo(a)`
- // 1) First it will visiting the LHS, which will return a reference to the
- // value holding `a`. This value should have been emitted at declaration
- // time and registered in the symbol table, so nothing would be
- // codegen'd. If the value is not in the symbol table, an error has been
- // emitted and nullptr is returned.
- // 2) Then the RHS is visited (recursively) and a call to `foo` is emitted
- // and the result value is returned. If an error occurs we get a nullptr
- // and propagate.
- //
- mlir::Value *L = mlirGen(*binop.getLHS());
- if (!L)
- return nullptr;
- mlir::Value *R = mlirGen(*binop.getRHS());
- if (!R)
- return nullptr;
- auto location = loc(binop.loc());
-
- // Derive the operation name from the binary operator. At the moment we only
- // support '+' and '*'.
- switch (binop.getOp()) {
- case '+':
- return builder->create<AddOp>(location, L, R).getResult();
- break;
- case '*':
- return builder->create<MulOp>(location, L, R).getResult();
- default:
- context.emitError(loc(binop.loc()),
- Twine("Error: invalid binary operator '") +
- Twine(binop.getOp()) + "'");
- return nullptr;
- }
- }
-
- // This is a reference to a variable in an expression. The variable is
- // expected to have been declared and so should have a value in the symbol
- // table, otherwise emit an error and return nullptr.
- mlir::Value *mlirGen(VariableExprAST &expr) {
- if (symbolTable.count(expr.getName()))
- return symbolTable.lookup(expr.getName());
- context.emitError(loc(expr.loc()), Twine("Error: unknown variable '") +
- expr.getName() + "'");
- return nullptr;
- }
-
- // Emit a return operation, return true on success.
- bool mlirGen(ReturnExprAST &ret) {
- auto location = loc(ret.loc());
- // `return` takes an optional expression, we need to account for it here.
- if (!ret.getExpr().hasValue()) {
- builder->create<ReturnOp>(location);
- return true;
- }
- auto *expr = mlirGen(*ret.getExpr().getValue());
- if (!expr)
- return false;
- builder->create<ReturnOp>(location, expr);
- return true;
- }
-
- // Emit a literal/constant array. It will be emitted as a flattened array of
- // data in an Attribute attached to a `toy.constant` operation.
- // See documentation on [Attributes](LangRef.md#attributes) for more details.
- // Here is an excerpt:
- //
- // Attributes are the mechanism for specifying constant data in MLIR in
- // places where a variable is never allowed [...]. They consist of a name
- // and a [concrete attribute value](#attribute-values). It is possible to
- // attach attributes to operations, functions, and function arguments. The
- // set of expected attributes, their structure, and their interpretation
- // are all contextually dependent on what they are attached to.
- //
- // Example, the source level statement:
- // var a<2, 3> = [[1, 2, 3], [4, 5, 6]];
- // will be converted to:
- // %0 = "toy.constant"() {value: dense<tensor<2x3xf64>,
- // [[1.000000e+00, 2.000000e+00, 3.000000e+00],
- // [4.000000e+00, 5.000000e+00, 6.000000e+00]]>} : () -> memref<2x3xf64>
- //
- mlir::Value *mlirGen(LiteralExprAST &lit) {
- auto location = loc(lit.loc());
- // The attribute is a vector with an attribute per element (number) in the
- // array, see `collectData()` below for more details.
- std::vector<mlir::Attribute> data;
- data.reserve(std::accumulate(lit.getDims().begin(), lit.getDims().end(), 1,
- std::multiplies<int>()));
- collectData(lit, data);
-
- // FIXME: using a tensor type is a HACK here.
- // Can we do differently without registering a dialect? Using a string blob?
- mlir::Type elementType = mlir::FloatType::getF64(&context);
- auto dataType = builder->getTensorType(lit.getDims(), elementType);
-
- // This is the actual attribute that actually hold the list of values for
- // this array literal.
- auto dataAttribute = builder->getDenseElementsAttr(dataType, data)
- .cast<mlir::DenseElementsAttr>();
-
- // Build the MLIR op `toy.constant`, only boilerplate below.
- return builder->create<ConstantOp>(location, lit.getDims(), dataAttribute)
- .getResult();
- }
-
- // Recursive helper function to accumulate the data that compose an array
- // literal. It flattens the nested structure in the supplied vector. For
- // example with this array:
- // [[1, 2], [3, 4]]
- // we will generate:
- // [ 1, 2, 3, 4 ]
- // Individual numbers are wrapped in a light wrapper `mlir::FloatAttr`.
- // Attributes are the way MLIR attaches constant to operations and functions.
- void collectData(ExprAST &expr, std::vector<mlir::Attribute> &data) {
- if (auto *lit = dyn_cast<LiteralExprAST>(&expr)) {
- for (auto &value : lit->getValues())
- collectData(*value, data);
- return;
- }
- assert(isa<NumberExprAST>(expr) && "expected literal or number expr");
- mlir::Type elementType = mlir::FloatType::getF64(&context);
- auto attr = mlir::FloatAttr::getChecked(
- elementType, cast<NumberExprAST>(expr).getValue(), loc(expr.loc()));
- data.push_back(attr);
- }
-
- // Emit a call expression. It emits specific operations for the `transpose`
- // builtin. Other identifiers are assumed to be user-defined functions.
- mlir::Value *mlirGen(CallExprAST &call) {
- auto location = loc(call.loc());
- std::string callee = call.getCallee();
- if (callee == "transpose") {
- if (call.getArgs().size() != 1) {
- context.emitError(
- location, Twine("MLIR codegen encountered an error: toy.transpose "
- "does not accept multiple arguments"));
- return nullptr;
- }
- mlir::Value *arg = mlirGen(*call.getArgs()[0]);
- return builder->create<TransposeOp>(location, arg).getResult();
- }
-
- // Codegen the operands first
- SmallVector<mlir::Value *, 4> operands;
- for (auto &expr : call.getArgs()) {
- auto *arg = mlirGen(*expr);
- if (!arg)
- return nullptr;
- operands.push_back(arg);
- }
- // Calls to user-defined function are mapped to a custom call that takes
- // the callee name as an attribute.
- return builder->create<GenericCallOp>(location, call.getCallee(), operands)
- .getResult();
- }
-
- // Emit a call expression. It emits specific operations for two builtins:
- // transpose(x) and print(x). Other identifiers are assumed to be user-defined
- // functions. Return false on failure.
- bool mlirGen(PrintExprAST &call) {
- auto *arg = mlirGen(*call.getArg());
- if (!arg)
- return false;
- auto location = loc(call.loc());
- builder->create<PrintOp>(location, arg);
- return true;
- }
-
- // Emit a constant for a single number (FIXME: semantic? broadcast?)
- mlir::Value *mlirGen(NumberExprAST &num) {
- auto location = loc(num.loc());
- mlir::Type elementType = mlir::FloatType::getF64(&context);
- auto attr = mlir::FloatAttr::getChecked(elementType, num.getValue(),
- loc(num.loc()));
- return builder->create<ConstantOp>(location, attr).getResult();
- }
-
- // Dispatch codegen for the right expression subclass using RTTI.
- mlir::Value *mlirGen(ExprAST &expr) {
- switch (expr.getKind()) {
- case toy::ExprAST::Expr_BinOp:
- return mlirGen(cast<BinaryExprAST>(expr));
- case toy::ExprAST::Expr_Var:
- return mlirGen(cast<VariableExprAST>(expr));
- case toy::ExprAST::Expr_Literal:
- return mlirGen(cast<LiteralExprAST>(expr));
- case toy::ExprAST::Expr_Call:
- return mlirGen(cast<CallExprAST>(expr));
- case toy::ExprAST::Expr_Num:
- return mlirGen(cast<NumberExprAST>(expr));
- default:
- context.emitError(
- loc(expr.loc()),
- Twine("MLIR codegen encountered an unhandled expr kind '") +
- Twine(expr.getKind()) + "'");
- return nullptr;
- }
- }
-
- // Handle a variable declaration, we'll codegen the expression that forms the
- // initializer and record the value in the symbol table before returning it.
- // Future expressions will be able to reference this variable through symbol
- // table lookup.
- mlir::Value *mlirGen(VarDeclExprAST &vardecl) {
- mlir::Value *value = nullptr;
- auto location = loc(vardecl.loc());
- if (auto init = vardecl.getInitVal()) {
- value = mlirGen(*init);
- if (!value)
- return nullptr;
- // We have the initializer value, but in case the variable was declared
- // with specific shape, we emit a "reshape" operation. It will get
- // optimized out later as needed.
- if (!vardecl.getType().shape.empty()) {
- value = builder
- ->create<ReshapeOp>(
- location, value,
- getType(vardecl.getType()).cast<ToyArrayType>())
- .getResult();
- }
- } else {
- context.emitError(loc(vardecl.loc()),
- "Missing initializer in variable declaration");
- return nullptr;
- }
- // Register the value in the symbol table
- declare(vardecl.getName(), value);
- return value;
- }
-
- /// Codegen a list of expression, return false if one of them hit an error.
- bool mlirGen(ExprASTList &blockAST) {
- ScopedHashTableScope<llvm::StringRef, mlir::Value *> var_scope(symbolTable);
- for (auto &expr : blockAST) {
- // Specific handling for variable declarations, return statement, and
- // print. These can only appear in block list and not in nested
- // expressions.
- if (auto *vardecl = dyn_cast<VarDeclExprAST>(expr.get())) {
- if (!mlirGen(*vardecl))
- return false;
- continue;
- }
- if (auto *ret = dyn_cast<ReturnExprAST>(expr.get())) {
- if (!mlirGen(*ret))
- return false;
- return true;
- }
- if (auto *print = dyn_cast<PrintExprAST>(expr.get())) {
- if (!mlirGen(*print))
- return false;
- continue;
- }
- // Generic expression dispatch codegen.
- if (!mlirGen(*expr))
- return false;
- }
- return true;
- }
-
- /// Build a type from a list of shape dimensions. Types are `array` followed
- /// by an optional dimension list, example: array<2, 2>
- /// They are wrapped in a `toy` dialect (see next chapter) and get printed:
- /// !toy.array<2, 2>
- template <typename T> mlir::Type getType(T shape) {
- SmallVector<int64_t, 8> shape64(shape.begin(), shape.end());
- return ToyArrayType::get(&context, shape64);
- }
-
- /// Build an MLIR type from a Toy AST variable type
- /// (forward to the generic getType(T) above).
- mlir::Type getType(const VarType &type) { return getType(type.shape); }
-};
-
-} // namespace
-
-namespace toy {
-
-// The public API for codegen.
-std::unique_ptr<mlir::Module> mlirGen(mlir::MLIRContext &context,
- ModuleAST &moduleAST) {
- return MLIRGenImpl(context).mlirGen(moduleAST);
-}
-
-} // namespace toy