summaryrefslogtreecommitdiff
path: root/tools/dataProvider.h
blob: fbf554b7d740fd72294928b3cb917534dec9d3c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#ifndef DATAPROV_H
#define DATAPROV_H

#include<Eigen/Dense>
#include "../tools/easylogging++.h"
#include<vector>
#include<list>

// TODO decide how to construct training data
// One possible way for training data:
//  Matrix composed of an array of feature vectors
//  Labels are composed of linked list, such as
//      6,3,4,0,5,0,0
//      =>  0->6 | 1->3 | 2->4->5
//  How to compensate for non exhaustive labeling?
//      Use -1 to indicate not yet labeled data
//      -1s will be excluded from training

typedef struct DataEntry{
    int qid;
    double rank;
    Eigen::VectorXd feature;
} DataEntry;

class DataList{
private:
    int n;
    std::list<DataEntry*> data;
public:
    int getSize(){return data.size();}
    void addEntry(DataEntry* d){data.push_front(d);}
    void setfSize(int fsize){n=fsize;}
    int getfSize(){return n;}
    int clear(){
        for (std::list<DataEntry*>::iterator i=data.begin(),end=data.end();i!=end;++i)
            delete *i;
        data.clear();
    }
    std::list<DataEntry*> getData(){
        return data;
    }
    ~DataList(){
        clear();
    }
};

class DataProvider  //Virtual base class for data input
{
protected:
    bool eof;
public:
    DataProvider():eof(false){};

    bool EOFile(){return eof;}

    virtual int getDataSet(DataList &out) = 0;
    virtual int open()=0;
    virtual int close()=0;
};

#endif