summaryrefslogtreecommitdiff
path: root/src/CuTNetLib/.svn/text-base/cuBiasedLinearity.cc.svn-base
diff options
context:
space:
mode:
Diffstat (limited to 'src/CuTNetLib/.svn/text-base/cuBiasedLinearity.cc.svn-base')
-rw-r--r--src/CuTNetLib/.svn/text-base/cuBiasedLinearity.cc.svn-base123
1 files changed, 123 insertions, 0 deletions
diff --git a/src/CuTNetLib/.svn/text-base/cuBiasedLinearity.cc.svn-base b/src/CuTNetLib/.svn/text-base/cuBiasedLinearity.cc.svn-base
new file mode 100644
index 0000000..b9ac137
--- /dev/null
+++ b/src/CuTNetLib/.svn/text-base/cuBiasedLinearity.cc.svn-base
@@ -0,0 +1,123 @@
+
+
+#include "cuBiasedLinearity.h"
+
+
+namespace TNet
+{
+
+ void
+ CuBiasedLinearity::
+ PropagateFnc(const CuMatrix<BaseFloat>& X, CuMatrix<BaseFloat>& Y)
+ {
+ //Y.SetConst(0.0);
+ Y.AddScaledRow(1.0,mBias,0.0);
+ Y.Gemm('N','N', 1.0, X, mLinearity, 1.0);
+ }
+
+
+ void
+ CuBiasedLinearity::
+ BackpropagateFnc(const CuMatrix<BaseFloat>& X, CuMatrix<BaseFloat>& Y)
+ {
+ //Y.SetConst(0.0);
+ Y.Gemm('N', 'T', 1.0, X, mLinearity, 0.0);
+ }
+
+
+ void
+ CuBiasedLinearity::
+ Update()
+ {
+#if 0
+ //former implementation
+ BaseFloat N = static_cast<BaseFloat>(GetInput().Rows());
+
+ mLinearityCorrection.Gemm('T','N',-mLearningRate/N,GetInput(),GetErrorInput(),mMomentum);
+ mBiasCorrection.AddColSum(-mLearningRate/N,GetErrorInput(),mMomentum);
+
+ //regularization weight decay
+ mLinearityCorrection.AddScaled(-mLearningRate*mWeightcost,mLinearity,1.0);
+
+ mLinearity.AddScaled(1.0,mLinearityCorrection,1.0);
+ mBias.AddScaled(1.0,mBiasCorrection,1.0);
+#endif
+
+#if 1
+ //new implementation
+ BaseFloat N = 1;
+ if(mGradDivFrm) {
+ N = static_cast<BaseFloat>(GetInput().Rows());
+ }
+ BaseFloat mmt_gain = static_cast<BaseFloat>(1.0/(1.0-mMomentum));
+ N *= mmt_gain;
+
+ mLinearityCorrection.Gemm('T','N',1.0,GetInput(),GetErrorInput(),mMomentum);
+ mBiasCorrection.AddColSum(1.0,GetErrorInput(),mMomentum);
+
+ mLinearity.AddScaled(-mLearningRate/N,mLinearityCorrection,1.0);
+ mBias.AddScaled(-mLearningRate/N,mBiasCorrection,1.0);
+
+ //regularization weight decay (from actual weights only)
+ BaseFloat L2_decay = -mLearningRate*mWeightcost*(mGradDivFrm?1.0:GetInput().Rows());
+ mLinearity.AddScaled(L2_decay, mLinearity,1.0);
+#endif
+ }
+
+
+ void
+ CuBiasedLinearity::
+ ReadFromStream(std::istream& rIn)
+ {
+ //matrix is stored transposed as SNet does
+ BfMatrix transpose;
+ rIn >> transpose;
+ mLinearity.CopyFrom(BfMatrix(transpose, TRANS));
+ //biases stored normally
+ BfVector bias;
+ rIn >> bias;
+ mBias.CopyFrom(bias);
+
+ if(transpose.Cols()*transpose.Rows() == 0) {
+ Error("Missing linearity matrix in network file");
+ }
+ if(bias.Dim() == 0) {
+ Error("Missing bias vector in network file");
+ }
+ if(mLinearity.Cols() != GetNOutputs() ||
+ mLinearity.Rows() != GetNInputs() ||
+ mBias.Dim() != GetNOutputs()
+ ){
+ std::ostringstream os;
+ os << "Wrong dimensionalities of matrix/vector in network file\n"
+ << "Inputs:" << GetNInputs()
+ << "Outputs:" << GetNOutputs()
+ << "\n"
+ << "linearityCols:" << mLinearity.Cols()
+ << "linearityRows:" << mLinearity.Rows()
+ << "biasDims:" << mBias.Dim()
+ << "\n";
+ Error(os.str());
+ }
+ }
+
+
+ void
+ CuBiasedLinearity::
+ WriteToStream(std::ostream& rOut)
+ {
+ //matrix is stored transposed as SNet does
+ BfMatrix tmp;
+ mLinearity.CopyTo(tmp);
+ BfMatrix transpose(tmp, TRANS);
+ rOut << transpose;
+ //biases stored normally
+ BfVector vec;
+ mBias.CopyTo(vec);
+ rOut << vec;
+ rOut << std::endl;
+ }
+
+
+} //namespace
+