summaryrefslogtreecommitdiff
path: root/src/TNetCu.cc
diff options
context:
space:
mode:
Diffstat (limited to 'src/TNetCu.cc')
-rw-r--r--src/TNetCu.cc508
1 files changed, 508 insertions, 0 deletions
diff --git a/src/TNetCu.cc b/src/TNetCu.cc
new file mode 100644
index 0000000..83c58cc
--- /dev/null
+++ b/src/TNetCu.cc
@@ -0,0 +1,508 @@
+
+/***************************************************************************
+ * copyright : (C) 2011 by Karel Vesely,UPGM,FIT,VUT,Brno *
+ * email : iveselyk@fit.vutbr.cz *
+ ***************************************************************************
+ * *
+ * This program is free software; you can redistribute it and/or modify *
+ * it under the terms of the APACHE License as published by the *
+ * Apache Software Foundation; either version 2.0 of the License, *
+ * or (at your option) any later version. *
+ * *
+ ***************************************************************************/
+
+#define SVN_DATE "$Date: 2012-03-23 14:22:49 +0100 (Fri, 23 Mar 2012) $"
+#define SVN_AUTHOR "$Author: iveselyk $"
+#define SVN_REVISION "$Revision: 110 $"
+#define SVN_ID "$Id: TNetCu.cc 110 2012-03-23 13:22:49Z iveselyk $"
+
+#define MODULE_VERSION "1.0.0 "__TIME__" "__DATE__" "SVN_ID
+
+/**
+ * \file TNetCu.cc
+ * \brief DNN training Entry Program CUDA-version
+ */
+
+
+/*** TNetLib includes */
+#include "Error.h"
+#include "Timer.h"
+#include "Features.h"
+#include "Labels.h"
+#include "Common.h"
+#include "MlfStream.h"
+#include "UserInterface.h"
+#include "Timer.h"
+
+/*** TNet includes */
+#include "cuObjectiveFunction.h"
+#include "cuNetwork.h"
+#include "cuCache.h"
+
+/*** STL includes */
+#include <iostream>
+#include <sstream>
+#include <numeric>
+
+
+
+
+//////////////////////////////////////////////////////////////////////
+// DEFINES
+//
+
+#define SNAME "TNET"
+
+using namespace TNet;
+
+void usage(const char* progname)
+{
+ const char *tchrptr;
+ if ((tchrptr = strrchr(progname, '\\')) != NULL) progname = tchrptr+1;
+ if ((tchrptr = strrchr(progname, '/')) != NULL) progname = tchrptr+1;
+ fprintf(stderr,
+"\n%s version " MODULE_VERSION "\n"
+"\nUSAGE: %s [options] DataFiles...\n\n"
+" Option Default\n\n"
+" -c Enable crossvalidation off\n"
+" -m file Set label map of NN outputs \n"
+" -n f Set learning rate to f 0.06\n"
+" -o ext Set target model ext None\n"
+" -A Print command line arguments Off\n"
+" -C cf Set config file to cf Default\n"
+" -D Display configuration variables Off\n"
+" -H mmf Load NN macro file \n"
+" -I mlf Load master label file mlf \n"
+" -L dir Set input label (or net) dir Current\n"
+" -M dir Dir to write NN macro files Current\n"
+" -O fn Objective function [mse,xent] xent\n"
+" -S file Set script file None\n"
+" -T N Set trace flags to N 0\n"
+" -V Print version information Off\n"
+" -X ext Set input label file ext lab\n"
+"\n"
+"BUNCHSIZE CACHESIZE CROSSVALIDATE FEATURETRANSFORM GPUSELECT GRADDIVFRM L1 LEARNINGRATE LEARNRATEFACTORS MLFTRANSC MOMENTUM NATURALREADORDER OBJECTIVEFUNCTION OUTPUTLABELMAP PRINTCONFIG PRINTVERSION RANDOMIZE SCRIPT SEED SOURCEMLF SOURCEMMF SOURCETRANSCDIR SOURCETRANSCEXT TARGETMMF TARGETMODELDIR TARGETMODELEXT TRACE WEIGHTCOST\n"
+"\n"
+"STARTFRMEXT ENDFRMEXT CMEANDIR CMEANMASK VARSCALEDIR VARSCALEMASK VARSCALEFN TARGETKIND DERIVWINDOWS DELTAWINDOW ACCWINDOW THIRDWINDOW\n"
+"\n"
+" %s is Copyright (C) 2010-2011 Karel Vesely\n"
+" licensed under the APACHE License, version 2.0\n"
+" Bug reports, feedback, etc, to: iveselyk@fit.vutbr.cz\n"
+"\n", progname, progname, progname);
+ exit(-1);
+}
+
+
+
+
+///////////////////////////////////////////////////////////////////////
+// MAIN FUNCTION
+//
+
+/**
+ * \brief Main Procedure
+ *
+ * Handles params extraction and all other inputs
+ * Entry point of CUDA based neural network training methods.
+ */
+int main(int argc, char *argv[]) try
+{
+ const char* p_option_string =
+ " -c n CROSSVALIDATE=TRUE"
+ " -m r OUTPUTLABELMAP"
+ " -n r LEARNINGRATE"
+ " -o r TARGETMODELEXT"
+ " -D n PRINTCONFIG=TRUE"
+ " -H l SOURCEMMF"
+ " -I r SOURCEMLF"
+ " -L r SOURCETRANSCDIR"
+ " -M r TARGETMODELDIR"
+ " -O r OBJECTIVEFUNCTION"
+ " -S l SCRIPT"
+ " -T r TRACE"
+ " -V n PRINTVERSION=TRUE"
+ " -X r SOURCETRANSCEXT";
+
+
+ UserInterface ui;
+ /** \brief Feature specified in params& scp*/
+ FeatureRepository feature_repo;
+ /** \brief Label file*/
+ LabelRepository label_repo;
+ /** \brief DNN network*/
+ CuNetwork network;
+ /** \brief Transform network*/
+ CuNetwork transform_network;
+ /** \brief Objective Function*/
+ CuObjectiveFunction* p_obj_function = NULL;
+ Timer timer;
+ Timer timer_frontend;
+ double time_frontend = 0.0;
+
+
+ const char* p_script;
+ const char* p_output_label_map;
+ BaseFloat learning_rate;
+ const char* learning_rate_factors;
+ BaseFloat momentum;
+ BaseFloat weightcost;
+ BaseFloat l1;
+ bool grad_div_frm;
+ CuObjectiveFunction::ObjFunType obj_fun_id;
+
+ const char* p_source_mmf_file;
+ const char* p_input_transform;
+ //const char* p_input_transform2;
+
+ const char* p_targetmmf; ///< SNet legacy --TARGETMMF
+ char p_trg_mmf_file[4096];
+ const char* p_trg_mmf_dir;
+ const char* p_trg_mmf_ext;
+
+ const char* p_source_mlf_file;
+ const char* p_src_lbl_dir;
+ const char* p_src_lbl_ext;
+ char p_lbl_file[4096];
+ bool mlf_transc;
+
+ int bunch_size;
+ int cache_size;
+ bool randomize;
+ long int seed;
+
+ bool cross_validate;
+
+ int trace;
+
+ int gpu_select;
+
+ // variables for feature repository
+ bool swap_features;
+ int target_kind;
+ int deriv_order;
+ int* p_deriv_win_lenghts;
+ int start_frm_ext;
+ int end_frm_ext;
+ char* cmn_path;
+ char* cmn_file;
+ const char* cmn_mask;
+ char* cvn_path;
+ char* cvn_file;
+ const char* cvn_mask;
+ const char* cvg_file;
+
+
+ /// OPTION PARSING ........ use the STK option parsing
+ if (argc == 1) { usage(argv[0]); return 1; }
+ int args_parsed = ui.ParseOptions(argc, argv, p_option_string, SNAME);
+
+
+ /// OPTION RETRIEVAL ........ extract the feature parameters
+ swap_features = !ui.GetBool(SNAME":NATURALREADORDER", TNet::IsBigEndian());
+
+ target_kind = ui.GetFeatureParams(&deriv_order, &p_deriv_win_lenghts,
+ &start_frm_ext, &end_frm_ext, &cmn_path, &cmn_file, &cmn_mask,
+ &cvn_path, &cvn_file, &cvn_mask, &cvg_file, SNAME":", 0);
+
+
+ /// extract other parameters
+ p_source_mmf_file = ui.GetStr(SNAME":SOURCEMMF", NULL);
+ p_input_transform = ui.GetStr(SNAME":FEATURETRANSFORM", NULL);
+
+ p_targetmmf = ui.GetStr(SNAME":TARGETMMF", NULL);///< has higher priority than "dir/file.ext" composition (SNet legacy)
+ p_trg_mmf_dir = ui.GetStr(SNAME":TARGETMODELDIR", "");///< dir for composition
+ p_trg_mmf_ext = ui.GetStr(SNAME":TARGETMODELEXT", "");///< ext for composition
+
+ p_script = ui.GetStr(SNAME":SCRIPT", NULL);
+ p_output_label_map = ui.GetStr(SNAME":OUTPUTLABELMAP", NULL);
+ learning_rate = ui.GetFlt(SNAME":LEARNINGRATE" , 0.06f);
+ learning_rate_factors = ui.GetStr(SNAME":LEARNRATEFACTORS", NULL);
+ momentum = ui.GetFlt(SNAME":MOMENTUM" , 0.0);
+ weightcost = ui.GetFlt(SNAME":WEIGHTCOST" , 0.0);
+ l1 = ui.GetFlt(SNAME":L1" , 0.0);
+ grad_div_frm = ui.GetBool(SNAME":GRADDIVFRM", true);
+
+ obj_fun_id = static_cast<CuObjectiveFunction::ObjFunType>(
+ ui.GetEnum(SNAME":OBJECTIVEFUNCTION",
+ CuObjectiveFunction::CROSS_ENTROPY, //< default
+ "xent", CuObjectiveFunction::CROSS_ENTROPY,
+ "mse", CuObjectiveFunction::MEAN_SQUARE_ERROR
+ ));
+
+ p_source_mlf_file = ui.GetStr(SNAME":SOURCEMLF", NULL);
+ p_src_lbl_dir = ui.GetStr(SNAME":SOURCETRANSCDIR", NULL);
+ p_src_lbl_ext = ui.GetStr(SNAME":SOURCETRANSCEXT", "lab");
+ mlf_transc = ui.GetBool(SNAME":MLFTRANSC", true);
+
+
+
+ bunch_size = ui.GetInt(SNAME":BUNCHSIZE", 256);
+ cache_size = ui.GetInt(SNAME":CACHESIZE", 12800);
+ randomize = ui.GetBool(SNAME":RANDOMIZE", true);
+
+ //cannot get long int
+ seed = ui.GetInt(SNAME":SEED", 0);
+
+ cross_validate = ui.GetBool(SNAME":CROSSVALIDATE", false);
+
+ trace = ui.GetInt(SNAME":TRACE", 0);
+ if(trace&4) { CuDevice::Instantiate().Verbose(true); }
+
+ gpu_select = ui.GetInt(SNAME":GPUSELECT", -1);
+ if(gpu_select >= 0) { CuDevice::Instantiate().SelectGPU(gpu_select); }
+
+
+
+ /// process the parameters
+ if(ui.GetBool(SNAME":PRINTCONFIG", false)) {
+ std::cout << std::endl;
+ ui.PrintConfig(std::cout);
+ std::cout << std::endl;
+ }
+ if(ui.GetBool(SNAME":PRINTVERSION", false)) {
+ std::cout << std::endl;
+ std::cout << "======= TNET v"MODULE_VERSION" =======" << std::endl;
+ std::cout << std::endl;
+ }
+ ui.CheckCommandLineParamUse();
+
+
+ /// the rest of the parameters are the feature files
+ for (; args_parsed < argc; args_parsed++) {
+ feature_repo.AddFile(argv[args_parsed]);
+ }
+
+ //**************************************************************************
+ //**************************************************************************
+ /// OPTION PARSING DONE .....................................................
+
+
+ /// read the input transform network from file p_input_transform
+ if(NULL != p_input_transform) {
+ if(trace&1) TraceLog(std::string("Reading input transform network: ")+p_input_transform);
+ transform_network.ReadNetwork(p_input_transform);
+ }
+
+
+ /// read the neural network from file p_source_mmf_file
+ if(NULL != p_source_mmf_file) {
+ if(trace&1) TraceLog(std::string("Reading network: ")+p_source_mmf_file);
+ network.ReadNetwork(p_source_mmf_file);
+ } else {
+ Error("Source MMF must be specified [-H]");
+ }
+
+
+ /// initialize the feature repository
+ feature_repo.Init(
+ swap_features, start_frm_ext, end_frm_ext, target_kind,
+ deriv_order, p_deriv_win_lenghts,
+ cmn_path, cmn_mask, cvn_path, cvn_mask, cvg_file
+ );
+ feature_repo.Trace(trace);
+ if(NULL != p_script) {
+ feature_repo.AddFileList(p_script);
+ } else {
+ Warning("WARNING: The script file is missing [-S]");
+ }
+
+
+ /// initialize the label repository
+ if(mlf_transc) {
+ if(NULL == p_source_mlf_file)
+ Error("Source mlf file file is missing [-I]");
+ if(NULL == p_output_label_map)
+ Error("Output label map is missing [-m]");
+
+ if(trace&1) TraceLog(std::string("Indexing labels: ")+p_source_mlf_file);
+ label_repo.Init(p_source_mlf_file, p_output_label_map, p_src_lbl_dir, p_src_lbl_ext);
+ label_repo.Trace(trace);
+ }
+
+
+ /// get objective function instance
+ p_obj_function = CuObjectiveFunction::Factory(obj_fun_id);
+
+ /// set the learnrate, momentum, weightcost
+ network.SetLearnRate(learning_rate, learning_rate_factors);
+ network.SetMomentum(momentum);
+ network.SetWeightcost(weightcost);
+ network.SetL1(l1);
+
+ /// set division of gradient by number of frames -> grad_div_frm
+ /// why grad div by frame num.
+ network.SetGradDivFrm(grad_div_frm);
+
+ /// seed the random number generator
+ if(seed == 0) {
+ struct timeval tv;
+ if (gettimeofday(&tv, 0) == -1) {
+ assert(0 && "gettimeofday does not work.");
+ exit(-1);
+ }
+ seed = (int)(tv.tv_sec) + (int)tv.tv_usec;
+ }
+ srand48(seed);
+
+
+
+
+ //**********************************************************************
+ //**********************************************************************
+ /// INITIALIZATION DONE .................................................
+ //
+ /// Start training
+ timer.Start();
+ std::cout << "===== TNET "
+ << (cross_validate?"CROSSVALIDATION":"TRAINING")
+ << " STARTED =====" << std::endl;
+ std::cout << "Objective function: "
+ << p_obj_function->GetTypeLabel() << std::endl;
+ if(!cross_validate) {
+ network.PrintLearnRate();
+ std::cout << "momentum: " << momentum
+ << " weightcost: " << weightcost << std::endl;
+ std::cout << "using seed: " << seed << std::endl;
+ }
+
+ /// make the cachesize divisible by bunchsize
+ cache_size = (cache_size/bunch_size)*bunch_size;
+ std::cout << "Bunchsize:" << bunch_size
+ << " Cachesize:" << cache_size << "\n";
+
+ CuCache cache;
+ cache.Init(cache_size,bunch_size);
+ cache.Trace(trace);
+ feature_repo.Rewind();
+
+ //**********************************************************************
+ //**********************************************************************
+ /// MAIN LOOP start
+ /**
+ * Main loop
+ * - Filling Cache from feature_repo
+ * - Read Features, perform transform, trim feature
+ * - Read labels (From label repo/HTK-matrix file)
+ * .
+ * - Randomize the Cache (Only time random ever used?!)
+ * - Training when Cache is not empty
+ * - Get training data from cache
+ * - Eval error using obj_fnc
+ * - BP
+ * .
+ * .
+ */
+ CuMatrix<BaseFloat> feats, output, labs, globerr;
+ while(!feature_repo.EndOfList()) {
+ timer_frontend.Start();
+ //fill cache
+ while(!cache.Full() && !feature_repo.EndOfList()) {
+ Matrix<BaseFloat> feats_host;
+ CuMatrix<BaseFloat> feats_original;
+ CuMatrix<BaseFloat> feats_expanded;
+
+ //read feats, perfrom feature transform
+ feature_repo.ReadFullMatrix(feats_host);
+ feats_host.CheckData(feature_repo.Current().Logical());
+ feats_original.CopyFrom(feats_host);
+ transform_network.Propagate(feats_original,feats_expanded);
+
+ //trim the start/end context
+ int rows = feats_expanded.Rows()-start_frm_ext-end_frm_ext;
+ CuMatrix<BaseFloat> feats_trim(rows,feats_expanded.Cols());
+ feats_trim.CopyRows(rows,start_frm_ext,feats_expanded,0);
+
+ //read labels
+ Matrix<BaseFloat> labs_host; CuMatrix<BaseFloat> labs_cu;
+ if(mlf_transc) {
+ //read from label repository
+ label_repo.GenDesiredMatrix(labs_host,feats_trim.Rows(),
+ feature_repo.CurrentHeader().mSamplePeriod,
+ feature_repo.Current().Logical().c_str());
+ } else {
+ //read targets from HTK-matrix file
+ MakeHtkFileName(p_lbl_file,feature_repo.Current().Logical().c_str(),
+ p_src_lbl_dir, p_src_lbl_ext);
+ labs_host.LoadHTK(p_lbl_file);
+ }
+ labs_cu.CopyFrom(labs_host);
+ //test number of rows
+ if(labs_cu.Rows() != feats_trim.Rows()) {
+ Error(std::string("Nonmatching number number of input/target examples")
+ + feature_repo.Current().Logical().c_str());
+ }
+
+ //add to cache
+ cache.AddData(feats_trim,labs_cu);
+
+ feature_repo.MoveNext();
+ }
+ timer_frontend.End(); time_frontend += timer_frontend.Val();
+
+ if(randomize) {
+ //randomize the cache
+ cache.Randomize();
+ }
+
+ while(!cache.Empty()) {
+ //get training data
+ cache.GetBunch(feats,labs);
+
+ //forward pass
+ network.Propagate(feats,output);
+ //accumulate error, get global err
+ p_obj_function->Evaluate(output,labs,globerr);
+
+ //backward pass
+ if(!cross_validate) {
+ network.Backpropagate(globerr);
+ }
+ if(trace&2) std::cout << "." << std::flush;
+ }
+ }
+
+
+
+ //**********************************************************************
+ //**********************************************************************
+ /// TRAINING FINISHED .................................................
+ //
+ /// Let's store the network, report the log
+
+
+ if(trace&1) TraceLog("Training finished");
+
+ //write the network
+ if(!cross_validate) {
+ if (NULL != p_targetmmf) {
+ if(trace&1) TraceLog(std::string("Writing network: ")+p_targetmmf);
+ network.WriteNetwork(p_targetmmf);
+ } else {
+ MakeHtkFileName(p_trg_mmf_file, p_source_mmf_file, p_trg_mmf_dir, p_trg_mmf_ext);
+ if(trace&1) TraceLog(std::string("Writing network: ")+p_trg_mmf_file);
+ network.WriteNetwork(p_trg_mmf_file);
+ }
+ }
+
+ timer.End();
+ std::cout << "===== TNET "
+ << (cross_validate?"CROSSVALIDATION":"TRAINING")
+ << " FINISHED ( " << timer.Val() << "s ) "
+ << "[FPS:" << p_obj_function->GetFrames() / timer.Val()
+ << ",RT:" << 1.0f / (p_obj_function->GetFrames() / timer.Val() / 100.0f)
+ << "] =====" << std::endl;
+
+ //report objective function (accuracy, frame counts...)
+ std::cout << "-- " << (cross_validate?"CV ":"TR ") << p_obj_function->Report();
+
+ if(trace &4) {
+ std::cout << "\n== PROFILE ==\nT-fe: " << time_frontend << std::endl;
+ }
+
+ return 0; ///finish OK
+
+} catch (std::exception& rExc) {
+ std::cerr << "Exception thrown" << std::endl;
+ std::cerr << rExc.what() << std::endl;
+ return 1;
+}