1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
/***************************************************************************
* copyright : (C) 2011 by Karel Vesely,UPGM,FIT,VUT,Brno *
* email : iveselyk@fit.vutbr.cz *
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the APACHE License as published by the *
* Apache Software Foundation; either version 2.0 of the License, *
* or (at your option) any later version. *
* *
***************************************************************************/
#define SVN_DATE "$Date: 2012-03-23 14:22:49 +0100 (Fri, 23 Mar 2012) $"
#define SVN_AUTHOR "$Author: iveselyk $"
#define SVN_REVISION "$Revision: 110 $"
#define SVN_ID "$Id: TNetCu.cc 110 2012-03-23 13:22:49Z iveselyk $"
#define MODULE_VERSION "1.0.0 "__TIME__" "__DATE__" "SVN_ID
/**
* \file TNetCu.cc
* \brief DNN training Entry Program CUDA-version
*/
/*** TNetLib includes */
#include "Error.h"
#include "Timer.h"
#include "Features.h"
#include "Labels.h"
#include "Common.h"
#include "MlfStream.h"
#include "UserInterface.h"
#include "Timer.h"
/*** TNet includes */
#include "cuObjectiveFunction.h"
#include "cuNetwork.h"
#include "cuCache.h"
/*** STL includes */
#include <iostream>
#include <sstream>
#include <numeric>
//////////////////////////////////////////////////////////////////////
// DEFINES
//
#define SNAME "TNET"
using namespace TNet;
void usage(const char* progname)
{
const char *tchrptr;
if ((tchrptr = strrchr(progname, '\\')) != NULL) progname = tchrptr+1;
if ((tchrptr = strrchr(progname, '/')) != NULL) progname = tchrptr+1;
fprintf(stderr,
"\n%s version " MODULE_VERSION "\n"
"\nUSAGE: %s [options] DataFiles...\n\n"
" Option Default\n\n"
" -c Enable crossvalidation off\n"
" -m file Set label map of NN outputs \n"
" -n f Set learning rate to f 0.06\n"
" -o ext Set target model ext None\n"
" -A Print command line arguments Off\n"
" -C cf Set config file to cf Default\n"
" -D Display configuration variables Off\n"
" -H mmf Load NN macro file \n"
" -I mlf Load master label file mlf \n"
" -L dir Set input label (or net) dir Current\n"
" -M dir Dir to write NN macro files Current\n"
" -O fn Objective function [mse,xent] xent\n"
" -S file Set script file None\n"
" -T N Set trace flags to N 0\n"
" -V Print version information Off\n"
" -X ext Set input label file ext lab\n"
"\n"
"BUNCHSIZE CACHESIZE CROSSVALIDATE FEATURETRANSFORM GPUSELECT GRADDIVFRM L1 LEARNINGRATE LEARNRATEFACTORS MLFTRANSC MOMENTUM NATURALREADORDER OBJECTIVEFUNCTION OUTPUTLABELMAP PRINTCONFIG PRINTVERSION RANDOMIZE SCRIPT SEED SOURCEMLF SOURCEMMF SOURCETRANSCDIR SOURCETRANSCEXT TARGETMMF TARGETMODELDIR TARGETMODELEXT TRACE WEIGHTCOST\n"
"\n"
"STARTFRMEXT ENDFRMEXT CMEANDIR CMEANMASK VARSCALEDIR VARSCALEMASK VARSCALEFN TARGETKIND DERIVWINDOWS DELTAWINDOW ACCWINDOW THIRDWINDOW\n"
"\n"
" %s is Copyright (C) 2010-2011 Karel Vesely\n"
" licensed under the APACHE License, version 2.0\n"
" Bug reports, feedback, etc, to: iveselyk@fit.vutbr.cz\n"
"\n", progname, progname, progname);
exit(-1);
}
///////////////////////////////////////////////////////////////////////
// MAIN FUNCTION
//
/**
* \brief Main Procedure
*
* Handles params extraction and all other inputs
* Entry point of CUDA based neural network training methods.
*/
int main(int argc, char *argv[]) try
{
const char* p_option_string =
" -c n CROSSVALIDATE=TRUE"
" -m r OUTPUTLABELMAP"
" -n r LEARNINGRATE"
" -o r TARGETMODELEXT"
" -D n PRINTCONFIG=TRUE"
" -H l SOURCEMMF"
" -I r SOURCEMLF"
" -L r SOURCETRANSCDIR"
" -M r TARGETMODELDIR"
" -O r OBJECTIVEFUNCTION"
" -S l SCRIPT"
" -T r TRACE"
" -V n PRINTVERSION=TRUE"
" -X r SOURCETRANSCEXT";
UserInterface ui;
/** \brief Feature specified in params& scp*/
FeatureRepository feature_repo;
/** \brief Label file*/
LabelRepository label_repo;
/** \brief DNN network*/
CuNetwork network;
/** \brief Transform network*/
CuNetwork transform_network;
/** \brief Objective Function*/
CuObjectiveFunction* p_obj_function = NULL;
Timer timer;
Timer timer_frontend;
double time_frontend = 0.0;
const char* p_script;
const char* p_output_label_map;
BaseFloat learning_rate;
const char* learning_rate_factors;
BaseFloat momentum;
BaseFloat weightcost;
BaseFloat l1;
bool grad_div_frm;
CuObjectiveFunction::ObjFunType obj_fun_id;
const char* p_source_mmf_file;
const char* p_input_transform;
//const char* p_input_transform2;
const char* p_targetmmf; ///< SNet legacy --TARGETMMF
char p_trg_mmf_file[4096];
const char* p_trg_mmf_dir;
const char* p_trg_mmf_ext;
const char* p_source_mlf_file;
const char* p_src_lbl_dir;
const char* p_src_lbl_ext;
char p_lbl_file[4096];
bool mlf_transc;
int bunch_size;
int cache_size;
bool randomize;
long int seed;
bool cross_validate;
int trace;
int gpu_select;
// variables for feature repository
bool swap_features;
int target_kind;
int deriv_order;
int* p_deriv_win_lenghts;
int start_frm_ext;
int end_frm_ext;
char* cmn_path;
char* cmn_file;
const char* cmn_mask;
char* cvn_path;
char* cvn_file;
const char* cvn_mask;
const char* cvg_file;
/// OPTION PARSING ........ use the STK option parsing
if (argc == 1) { usage(argv[0]); return 1; }
int args_parsed = ui.ParseOptions(argc, argv, p_option_string, SNAME);
/// OPTION RETRIEVAL ........ extract the feature parameters
swap_features = !ui.GetBool(SNAME":NATURALREADORDER", TNet::IsBigEndian());
target_kind = ui.GetFeatureParams(&deriv_order, &p_deriv_win_lenghts,
&start_frm_ext, &end_frm_ext, &cmn_path, &cmn_file, &cmn_mask,
&cvn_path, &cvn_file, &cvn_mask, &cvg_file, SNAME":", 0);
/// extract other parameters
p_source_mmf_file = ui.GetStr(SNAME":SOURCEMMF", NULL);
p_input_transform = ui.GetStr(SNAME":FEATURETRANSFORM", NULL);
p_targetmmf = ui.GetStr(SNAME":TARGETMMF", NULL);///< has higher priority than "dir/file.ext" composition (SNet legacy)
p_trg_mmf_dir = ui.GetStr(SNAME":TARGETMODELDIR", "");///< dir for composition
p_trg_mmf_ext = ui.GetStr(SNAME":TARGETMODELEXT", "");///< ext for composition
p_script = ui.GetStr(SNAME":SCRIPT", NULL);
p_output_label_map = ui.GetStr(SNAME":OUTPUTLABELMAP", NULL);
learning_rate = ui.GetFlt(SNAME":LEARNINGRATE" , 0.06f);
learning_rate_factors = ui.GetStr(SNAME":LEARNRATEFACTORS", NULL);
momentum = ui.GetFlt(SNAME":MOMENTUM" , 0.0);
weightcost = ui.GetFlt(SNAME":WEIGHTCOST" , 0.0);
l1 = ui.GetFlt(SNAME":L1" , 0.0);
grad_div_frm = ui.GetBool(SNAME":GRADDIVFRM", true);
obj_fun_id = static_cast<CuObjectiveFunction::ObjFunType>(
ui.GetEnum(SNAME":OBJECTIVEFUNCTION",
CuObjectiveFunction::CROSS_ENTROPY, //< default
"xent", CuObjectiveFunction::CROSS_ENTROPY,
"mse", CuObjectiveFunction::MEAN_SQUARE_ERROR
));
p_source_mlf_file = ui.GetStr(SNAME":SOURCEMLF", NULL);
p_src_lbl_dir = ui.GetStr(SNAME":SOURCETRANSCDIR", NULL);
p_src_lbl_ext = ui.GetStr(SNAME":SOURCETRANSCEXT", "lab");
mlf_transc = ui.GetBool(SNAME":MLFTRANSC", true);
bunch_size = ui.GetInt(SNAME":BUNCHSIZE", 256);
cache_size = ui.GetInt(SNAME":CACHESIZE", 12800);
randomize = ui.GetBool(SNAME":RANDOMIZE", true);
//cannot get long int
seed = ui.GetInt(SNAME":SEED", 0);
cross_validate = ui.GetBool(SNAME":CROSSVALIDATE", false);
trace = ui.GetInt(SNAME":TRACE", 0);
if(trace&4) { CuDevice::Instantiate().Verbose(true); }
gpu_select = ui.GetInt(SNAME":GPUSELECT", -1);
if(gpu_select >= 0) { CuDevice::Instantiate().SelectGPU(gpu_select); }
/// process the parameters
if(ui.GetBool(SNAME":PRINTCONFIG", false)) {
std::cout << std::endl;
ui.PrintConfig(std::cout);
std::cout << std::endl;
}
if(ui.GetBool(SNAME":PRINTVERSION", false)) {
std::cout << std::endl;
std::cout << "======= TNET v"MODULE_VERSION" =======" << std::endl;
std::cout << std::endl;
}
ui.CheckCommandLineParamUse();
/// the rest of the parameters are the feature files
for (; args_parsed < argc; args_parsed++) {
feature_repo.AddFile(argv[args_parsed]);
}
//**************************************************************************
//**************************************************************************
/// OPTION PARSING DONE .....................................................
/// read the input transform network from file p_input_transform
if(NULL != p_input_transform) {
if(trace&1) TraceLog(std::string("Reading input transform network: ")+p_input_transform);
transform_network.ReadNetwork(p_input_transform);
}
/// read the neural network from file p_source_mmf_file
if(NULL != p_source_mmf_file) {
if(trace&1) TraceLog(std::string("Reading network: ")+p_source_mmf_file);
network.ReadNetwork(p_source_mmf_file);
} else {
Error("Source MMF must be specified [-H]");
}
/// initialize the feature repository
feature_repo.Init(
swap_features, start_frm_ext, end_frm_ext, target_kind,
deriv_order, p_deriv_win_lenghts,
cmn_path, cmn_mask, cvn_path, cvn_mask, cvg_file
);
feature_repo.Trace(trace);
if(NULL != p_script) {
feature_repo.AddFileList(p_script);
} else {
Warning("WARNING: The script file is missing [-S]");
}
/// initialize the label repository
if(mlf_transc) {
if(NULL == p_source_mlf_file)
Error("Source mlf file file is missing [-I]");
if(NULL == p_output_label_map)
Error("Output label map is missing [-m]");
if(trace&1) TraceLog(std::string("Indexing labels: ")+p_source_mlf_file);
label_repo.Init(p_source_mlf_file, p_output_label_map, p_src_lbl_dir, p_src_lbl_ext);
label_repo.Trace(trace);
}
/// get objective function instance
p_obj_function = CuObjectiveFunction::Factory(obj_fun_id);
/// set the learnrate, momentum, weightcost
network.SetLearnRate(learning_rate, learning_rate_factors);
network.SetMomentum(momentum);
network.SetWeightcost(weightcost);
network.SetL1(l1);
/// set division of gradient by number of frames -> grad_div_frm
/// why grad div by frame num.
network.SetGradDivFrm(grad_div_frm);
/// seed the random number generator
if(seed == 0) {
struct timeval tv;
if (gettimeofday(&tv, 0) == -1) {
assert(0 && "gettimeofday does not work.");
exit(-1);
}
seed = (int)(tv.tv_sec) + (int)tv.tv_usec;
}
srand48(seed);
//**********************************************************************
//**********************************************************************
/// INITIALIZATION DONE .................................................
//
/// Start training
timer.Start();
std::cout << "===== TNET "
<< (cross_validate?"CROSSVALIDATION":"TRAINING")
<< " STARTED =====" << std::endl;
std::cout << "Objective function: "
<< p_obj_function->GetTypeLabel() << std::endl;
if(!cross_validate) {
network.PrintLearnRate();
std::cout << "momentum: " << momentum
<< " weightcost: " << weightcost << std::endl;
std::cout << "using seed: " << seed << std::endl;
}
/// make the cachesize divisible by bunchsize
cache_size = (cache_size/bunch_size)*bunch_size;
std::cout << "Bunchsize:" << bunch_size
<< " Cachesize:" << cache_size << "\n";
CuCache cache;
cache.Init(cache_size,bunch_size);
cache.Trace(trace);
feature_repo.Rewind();
//**********************************************************************
//**********************************************************************
/// MAIN LOOP start
/**
* Main loop
* - Filling Cache from feature_repo
* - Read Features, perform transform, trim feature
* - Read labels (From label repo/HTK-matrix file)
* .
* - Randomize the Cache (Only time random ever used?!)
* - Training when Cache is not empty
* - Get training data from cache
* - Eval error using obj_fnc
* - BP
* .
* .
*/
CuMatrix<BaseFloat> feats, output, labs, globerr;
while(!feature_repo.EndOfList()) {
timer_frontend.Start();
//fill cache
while(!cache.Full() && !feature_repo.EndOfList()) {
Matrix<BaseFloat> feats_host;
CuMatrix<BaseFloat> feats_original;
CuMatrix<BaseFloat> feats_expanded;
//read feats, perfrom feature transform
feature_repo.ReadFullMatrix(feats_host);
feats_host.CheckData(feature_repo.Current().Logical());
feats_original.CopyFrom(feats_host);
transform_network.Propagate(feats_original,feats_expanded);
//trim the start/end context
int rows = feats_expanded.Rows()-start_frm_ext-end_frm_ext;
CuMatrix<BaseFloat> feats_trim(rows,feats_expanded.Cols());
feats_trim.CopyRows(rows,start_frm_ext,feats_expanded,0);
//read labels
Matrix<BaseFloat> labs_host; CuMatrix<BaseFloat> labs_cu;
if(mlf_transc) {
//read from label repository
label_repo.GenDesiredMatrix(labs_host,feats_trim.Rows(),
feature_repo.CurrentHeader().mSamplePeriod,
feature_repo.Current().Logical().c_str());
} else {
//read targets from HTK-matrix file
MakeHtkFileName(p_lbl_file,feature_repo.Current().Logical().c_str(),
p_src_lbl_dir, p_src_lbl_ext);
labs_host.LoadHTK(p_lbl_file);
}
labs_cu.CopyFrom(labs_host);
//test number of rows
if(labs_cu.Rows() != feats_trim.Rows()) {
Error(std::string("Nonmatching number number of input/target examples")
+ feature_repo.Current().Logical().c_str());
}
//add to cache
cache.AddData(feats_trim,labs_cu);
feature_repo.MoveNext();
}
timer_frontend.End(); time_frontend += timer_frontend.Val();
if(randomize) {
//randomize the cache
cache.Randomize();
}
while(!cache.Empty()) {
//get training data
cache.GetBunch(feats,labs);
//forward pass
network.Propagate(feats,output);
//accumulate error, get global err
p_obj_function->Evaluate(output,labs,globerr);
//backward pass
if(!cross_validate) {
network.Backpropagate(globerr);
}
if(trace&2) std::cout << "." << std::flush;
}
}
//**********************************************************************
//**********************************************************************
/// TRAINING FINISHED .................................................
//
/// Let's store the network, report the log
if(trace&1) TraceLog("Training finished");
//write the network
if(!cross_validate) {
if (NULL != p_targetmmf) {
if(trace&1) TraceLog(std::string("Writing network: ")+p_targetmmf);
network.WriteNetwork(p_targetmmf);
} else {
MakeHtkFileName(p_trg_mmf_file, p_source_mmf_file, p_trg_mmf_dir, p_trg_mmf_ext);
if(trace&1) TraceLog(std::string("Writing network: ")+p_trg_mmf_file);
network.WriteNetwork(p_trg_mmf_file);
}
}
timer.End();
std::cout << "===== TNET "
<< (cross_validate?"CROSSVALIDATION":"TRAINING")
<< " FINISHED ( " << timer.Val() << "s ) "
<< "[FPS:" << p_obj_function->GetFrames() / timer.Val()
<< ",RT:" << 1.0f / (p_obj_function->GetFrames() / timer.Val() / 100.0f)
<< "] =====" << std::endl;
//report objective function (accuracy, frame counts...)
std::cout << "-- " << (cross_validate?"CV ":"TR ") << p_obj_function->Report();
if(trace &4) {
std::cout << "\n== PROFILE ==\nT-fe: " << time_frontend << std::endl;
}
return 0; ///finish OK
} catch (std::exception& rExc) {
std::cerr << "Exception thrown" << std::endl;
std::cerr << rExc.what() << std::endl;
return 1;
}
|