1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
/***************************************************************************
* copyright : (C) 2011 by Karel Vesely,UPGM,FIT,VUT,Brno *
* email : iveselyk@fit.vutbr.cz *
***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the APACHE License as published by the *
* Apache Software Foundation; either version 2.0 of the License, *
* or (at your option) any later version. *
* *
***************************************************************************/
#define SVN_DATE "$Date: 2011-12-08 11:59:03 +0100 (Thu, 08 Dec 2011) $"
#define SVN_AUTHOR "$Author: iveselyk $"
#define SVN_REVISION "$Revision: 94 $"
#define SVN_ID "$Id: TNormCu.cc 94 2011-12-08 10:59:03Z iveselyk $"
#define MODULE_VERSION "1.0.0 "__TIME__" "__DATE__" "SVN_ID
/*** KaldiLib includes */
#include "Error.h"
#include "Timer.h"
#include "Features.h"
#include "Common.h"
#include "UserInterface.h"
#include "Timer.h"
/*** TNet includes */
#include "cuNetwork.h"
#include "Nnet.h"
/*** STL includes */
#include <iostream>
#include <sstream>
#include <numeric>
//////////////////////////////////////////////////////////////////////
// DEFINES
//
#define SNAME "TNORM"
using namespace TNet;
void usage(const char* progname)
{
const char *tchrptr;
if ((tchrptr = strrchr(progname, '\\')) != NULL) progname = tchrptr+1;
if ((tchrptr = strrchr(progname, '/')) != NULL) progname = tchrptr+1;
fprintf(stderr,
"\n%s version " MODULE_VERSION "\n"
"\nUSAGE: %s [options] DataFiles...\n\n"
" Option Default\n\n"
" -A Print command line arguments Off\n"
" -C cf Set config file to cf Default\n"
" -D Display configuration variables Off\n"
" -H mmf Load NN macro file \n"
" -S file Set script file None\n"
" -T N Set trace flags to N 0\n"
" -V Print version information Off\n"
"\n"
"NATURALREADORDER PRINTCONFIG PRINTVERSION SCRIPT SOURCEMMF TARGETMMF TRACE\n"
"\n"
"STARTFRMEXT ENDFRMEXT CMEANDIR CMEANMASK VARSCALEDIR VARSCALEMASK VARSCALEFN TARGETKIND DERIVWINDOWS DELTAWINDOW ACCWINDOW THIRDWINDOW\n"
"\n"
" %s is Copyright (C) 2010-2011 Karel Vesely\n"
" licensed under the APACHE License, version 2.0\n"
" Bug reports, feedback, etc, to: iveselyk@fit.vutbr.cz\n"
"\n", progname, progname, progname);
exit(-1);
}
///////////////////////////////////////////////////////////////////////
// MAIN FUNCTION
//
int main(int argc, char *argv[]) try
{
const char* p_option_string =
" -D n PRINTCONFIG=TRUE"
" -H l SOURCEMMF"
" -S l SCRIPT"
" -T r TRACE"
" -V n PRINTVERSION=TRUE"
;
UserInterface ui;
FeatureRepository features;
CuNetwork network;
Network network_cpu;
Timer timer;
const char* p_script;
const char* p_source_mmf_file;
const char* p_targetmmf;
int traceFlag;
// variables for feature repository
bool swap_features;
int target_kind;
int deriv_order;
int* p_deriv_win_lenghts;
int start_frm_ext;
int end_frm_ext;
char* cmn_path;
char* cmn_file;
const char* cmn_mask;
char* cvn_path;
char* cvn_file;
const char* cvn_mask;
const char* cvg_file;
// OPTION PARSING ..........................................................
// use the STK option parsing
if (argc == 1) { usage(argv[0]); return 1; }
int args_parsed = ui.ParseOptions(argc, argv, p_option_string, SNAME);
// OPTION RETRIEVAL ........................................................
// extract the feature parameters
swap_features = !ui.GetBool(SNAME":NATURALREADORDER", TNet::IsBigEndian());
target_kind = ui.GetFeatureParams(&deriv_order, &p_deriv_win_lenghts,
&start_frm_ext, &end_frm_ext, &cmn_path, &cmn_file, &cmn_mask,
&cvn_path, &cvn_file, &cvn_mask, &cvg_file, SNAME":", 0);
// extract other parameters
p_source_mmf_file = ui.GetStr(SNAME":SOURCEMMF", NULL);
p_targetmmf = ui.GetStr(SNAME":TARGETMMF", NULL);//< target for mean/variance
p_script = ui.GetStr(SNAME":SCRIPT", NULL);
traceFlag = ui.GetInt(SNAME":TRACE", 0);
if(traceFlag&1) { CuDevice::Instantiate().Verbose(true); }
// process the parameters
if(ui.GetBool(SNAME":PRINTCONFIG", false)) {
std::cout << std::endl;
ui.PrintConfig(std::cout);
std::cout << std::endl;
}
if(ui.GetBool(SNAME":PRINTVERSION", false)) {
std::cout << std::endl;
std::cout << "======= TNET v"MODULE_VERSION" xvesel39 =======" << std::endl;
std::cout << std::endl;
}
ui.CheckCommandLineParamUse();
// the rest of the parameters are the feature files
for (; args_parsed < argc; args_parsed++) {
features.AddFile(argv[args_parsed]);
}
//**************************************************************************
//**************************************************************************
// OPTION PARSING DONE .....................................................
//read the neural network
if(NULL != p_source_mmf_file) {
if(CuDevice::Instantiate().IsPresent()) {
if(traceFlag&1) TraceLog(std::string("Reading GPU network: ")+p_source_mmf_file);
network.ReadNetwork(p_source_mmf_file);
} else {
if(traceFlag&1) TraceLog(std::string("Reading CPU network: ")+p_source_mmf_file);
network_cpu.ReadNetwork(p_source_mmf_file);
}
} else {
Error("Source MMF must be specified [-H]");
}
// initialize the feature repository
features.Init(
swap_features, start_frm_ext, end_frm_ext, target_kind,
deriv_order, p_deriv_win_lenghts,
cmn_path, cmn_mask, cvn_path, cvn_mask, cvg_file
);
if(NULL != p_script) {
features.AddFileList(p_script);
} else {
Warning("WARNING: The script file is missing [-S]");
}
//**********************************************************************
//**********************************************************************
// INITIALIZATION DONE .................................................
//
// Start training
timer.Start();
std::cout << "===== TNormCu STARTED =====" << std::endl;
int dim = CuDevice::Instantiate().IsPresent() ?
network.GetNOutputs() :
network_cpu.GetNOutputs();
Vector<double> first(dim); first.Set(0.0);
Vector<double> second(dim); second.Set(0.0);
unsigned long framesN = 0;
//progress
size_t cnt = 0;
size_t step = features.QueueSize() / 100;
if(step == 0) step = 1;
//**********************************************************************
//**********************************************************************
// MAIN LOOP
for(features.Rewind(); !features.EndOfList(); features.MoveNext()) {
Matrix<BaseFloat> feats_host,net_out;
Matrix<BaseFloat> feats_host_out;
CuMatrix<BaseFloat> feats;
CuMatrix<BaseFloat> feats_expanded;
//get features
features.ReadFullMatrix(feats_host);
if(CuDevice::Instantiate().IsPresent()) {
//propagate
feats.CopyFrom(feats_host);
network.Propagate(feats,feats_expanded);
//trim the xxx_frm_ext
int rows = feats_expanded.Rows()-start_frm_ext-end_frm_ext;
CuMatrix<BaseFloat> feats_trim(rows,feats_expanded.Cols());
feats_trim.CopyRows(rows,start_frm_ext,feats_expanded,0);
feats_trim.CopyTo(feats_host_out);
} else {
//propagate
network_cpu.Propagate(feats_host,net_out);
//trim the xxx_frm_ext
feats_host_out.Init(net_out.Rows()-start_frm_ext-end_frm_ext,net_out.Cols());
memcpy(feats_host_out.pData(),net_out.pRowData(start_frm_ext),feats_host_out.MSize());
}
//accumulate first/second order statistics
for(size_t m=0; m<feats_host_out.Rows(); m++) {
for(size_t n=0; n<feats_host_out.Cols(); n++) {
BaseFloat val = feats_host_out(m,n);
first[n] += val;
second[n] += val*val;
if(isnan(first[n])||isnan(second[n])||
isinf(first[n])||isinf(second[n]))
{
std::ostringstream oss;
oss << "nan/inf in accumulators\n"
<< "first:" << first << "\n"
<< "second:" << second << "\n"
<< "frames:" << framesN << "\n"
<< "utterance:" << features.Current().Logical() << "\n"
<< "feats_host: " << feats_host << "\n"
<< "feats_host_out: " << feats_host_out << "\n";
Error(oss.str());
}
}
}
framesN += feats_host.Rows();
//progress
if((cnt++ % step) == 0) std::cout << 100 * cnt / features.QueueSize() << "%, " << std::flush;
}
//**********************************************************************
//**********************************************************************
// ACCUMULATING FINISHED .................................................
//
//get the mean/variance vectors
Vector<double> mean(first);
mean.Scale(1.0/framesN);
Vector<double> variance(second);
variance.Scale(1.0/framesN);
for(size_t i=0; i<mean.Dim(); i++) {
variance[i] -= mean[i]*mean[i];
}
//get the mean normalization biase vector,
//use negative mean vector
Vector<double> bias(mean);
bias.Scale(-1.0);
//get the variance normalization window vector,
//inverse of square root of variance
Vector<double> window(variance);
for(size_t i=0; i<window.Dim(); i++) {
window[i] = 1.0/sqrt(window[i]);
}
//store the normalization network
std::ofstream os(p_targetmmf);
if(!os.good()) Error(std::string("Cannot open file for writing: ")+p_targetmmf);
dim = mean.Dim();
os << "<bias> " << dim << " " << dim << "\n"
<< bias << "\n\n"
<< "<window> " << dim << " " << dim << "\n"
<< window << "\n\n";
os.close();
timer.End();
std::cout << "\n\n===== TNormCu FINISHED ( " << timer.Val() << "s ) "
<< "[FPS:" << framesN / timer.Val()
<< ",RT:" << 1.0f / (framesN / timer.Val() / 100.0f)
<< "] =====" << std::endl;
std::cout << "frames: " << framesN
<< ", max_bias: " << bias.Max()
<< ", max_window: " << window.Max()
<< ", min_window: " << window.Min()
<< "\n";
return 0; ///finish OK
} catch (std::exception& rExc) {
std::cerr << "Exception thrown" << std::endl;
std::cerr << rExc.what() << std::endl;
return 1;
}
|