diff options
Diffstat (limited to 'include/toy')
-rw-r--r-- | include/toy/AST.h | 256 | ||||
-rw-r--r-- | include/toy/Dialect.h | 393 | ||||
-rw-r--r-- | include/toy/Lexer.h | 239 | ||||
-rw-r--r-- | include/toy/Lowering.h | 45 | ||||
-rw-r--r-- | include/toy/MLIRGen.h | 42 | ||||
-rw-r--r-- | include/toy/Parser.h | 494 | ||||
-rw-r--r-- | include/toy/Passes.h | 33 |
7 files changed, 1502 insertions, 0 deletions
diff --git a/include/toy/AST.h b/include/toy/AST.h new file mode 100644 index 0000000..456a323 --- /dev/null +++ b/include/toy/AST.h @@ -0,0 +1,256 @@ +//===- AST.h - Node definition for the Toy AST ----------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the AST for the Toy language. It is optimized for +// simplicity, not efficiency. The AST forms a tree structure where each node +// references its children using std::unique_ptr<>. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_AST_H_ +#define MLIR_TUTORIAL_TOY_AST_H_ + +#include "toy/Lexer.h" + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/Casting.h" +#include <vector> + +namespace toy { + +/// A variable +struct VarType { + enum { TY_FLOAT, TY_INT } elt_ty; + std::vector<int> shape; +}; + +/// Base class for all expression nodes. +class ExprAST { +public: + enum ExprASTKind { + Expr_VarDecl, + Expr_Return, + Expr_Num, + Expr_Literal, + Expr_Var, + Expr_BinOp, + Expr_Call, + Expr_Print, // builtin + Expr_If, + Expr_For, + }; + + ExprAST(ExprASTKind kind, Location location) + : kind(kind), location(location) {} + + virtual ~ExprAST() = default; + + ExprASTKind getKind() const { return kind; } + + const Location &loc() { return location; } + +private: + const ExprASTKind kind; + Location location; +}; + +/// A block-list of expressions. +using ExprASTList = std::vector<std::unique_ptr<ExprAST>>; + +/// Expression class for numeric literals like "1.0". +class NumberExprAST : public ExprAST { + double Val; + +public: + NumberExprAST(Location loc, double Val) : ExprAST(Expr_Num, loc), Val(Val) {} + + double getValue() { return Val; } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Num; } +}; + +/// +class LiteralExprAST : public ExprAST { + std::vector<std::unique_ptr<ExprAST>> values; + std::vector<int64_t> dims; + +public: + LiteralExprAST(Location loc, std::vector<std::unique_ptr<ExprAST>> values, + std::vector<int64_t> dims) + : ExprAST(Expr_Literal, loc), values(std::move(values)), + dims(std::move(dims)) {} + + std::vector<std::unique_ptr<ExprAST>> &getValues() { return values; } + std::vector<int64_t> &getDims() { return dims; } + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Literal; } +}; + +/// Expression class for referencing a variable, like "a". +class VariableExprAST : public ExprAST { + std::string name; + +public: + VariableExprAST(Location loc, const std::string &name) + : ExprAST(Expr_Var, loc), name(name) {} + + llvm::StringRef getName() { return name; } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Var; } +}; + +/// +class VarDeclExprAST : public ExprAST { + std::string name; + VarType type; + std::unique_ptr<ExprAST> initVal; + +public: + VarDeclExprAST(Location loc, const std::string &name, VarType type, + std::unique_ptr<ExprAST> initVal) + : ExprAST(Expr_VarDecl, loc), name(name), type(std::move(type)), + initVal(std::move(initVal)) {} + + llvm::StringRef getName() { return name; } + ExprAST *getInitVal() { return initVal.get(); } + VarType &getType() { return type; } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_VarDecl; } +}; + +/// +class ReturnExprAST : public ExprAST { + llvm::Optional<std::unique_ptr<ExprAST>> expr; + +public: + ReturnExprAST(Location loc, llvm::Optional<std::unique_ptr<ExprAST>> expr) + : ExprAST(Expr_Return, loc), expr(std::move(expr)) {} + + llvm::Optional<ExprAST *> getExpr() { + if (expr.hasValue()) + return expr->get(); + return llvm::NoneType(); + } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Return; } +}; + +/// Expression class for a binary operator. +class BinaryExprAST : public ExprAST { + char Op; + std::unique_ptr<ExprAST> LHS, RHS; + +public: + char getOp() { return Op; } + ExprAST *getLHS() { return LHS.get(); } + ExprAST *getRHS() { return RHS.get(); } + + BinaryExprAST(Location loc, char Op, std::unique_ptr<ExprAST> LHS, + std::unique_ptr<ExprAST> RHS) + : ExprAST(Expr_BinOp, loc), Op(Op), LHS(std::move(LHS)), + RHS(std::move(RHS)) {} + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_BinOp; } +}; + +/// Expression class for function calls. +class CallExprAST : public ExprAST { + std::string Callee; + std::vector<std::unique_ptr<ExprAST>> Args; + +public: + CallExprAST(Location loc, const std::string &Callee, + std::vector<std::unique_ptr<ExprAST>> Args) + : ExprAST(Expr_Call, loc), Callee(Callee), Args(std::move(Args)) {} + + llvm::StringRef getCallee() { return Callee; } + llvm::ArrayRef<std::unique_ptr<ExprAST>> getArgs() { return Args; } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Call; } +}; + +/// Expression class for builtin print calls. +class PrintExprAST : public ExprAST { + std::unique_ptr<ExprAST> Arg; + +public: + PrintExprAST(Location loc, std::unique_ptr<ExprAST> Arg) + : ExprAST(Expr_Print, loc), Arg(std::move(Arg)) {} + + ExprAST *getArg() { return Arg.get(); } + + /// LLVM style RTTI + static bool classof(const ExprAST *C) { return C->getKind() == Expr_Print; } +}; + +/// This class represents the "prototype" for a function, which captures its +/// name, and its argument names (thus implicitly the number of arguments the +/// function takes). +class PrototypeAST { + Location location; + std::string name; + std::vector<std::unique_ptr<VariableExprAST>> args; + +public: + PrototypeAST(Location location, const std::string &name, + std::vector<std::unique_ptr<VariableExprAST>> args) + : location(location), name(name), args(std::move(args)) {} + + const Location &loc() { return location; } + const std::string &getName() const { return name; } + const std::vector<std::unique_ptr<VariableExprAST>> &getArgs() { + return args; + } +}; + +/// This class represents a function definition itself. +class FunctionAST { + std::unique_ptr<PrototypeAST> Proto; + std::unique_ptr<ExprASTList> Body; + +public: + FunctionAST(std::unique_ptr<PrototypeAST> Proto, + std::unique_ptr<ExprASTList> Body) + : Proto(std::move(Proto)), Body(std::move(Body)) {} + PrototypeAST *getProto() { return Proto.get(); } + ExprASTList *getBody() { return Body.get(); } +}; + +/// This class represents a list of functions to be processed together +class ModuleAST { + std::vector<FunctionAST> functions; + +public: + ModuleAST(std::vector<FunctionAST> functions) + : functions(std::move(functions)) {} + + auto begin() -> decltype(functions.begin()) { return functions.begin(); } + auto end() -> decltype(functions.end()) { return functions.end(); } +}; + +void dump(ModuleAST &); + +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_AST_H_ diff --git a/include/toy/Dialect.h b/include/toy/Dialect.h new file mode 100644 index 0000000..9d7f82d --- /dev/null +++ b/include/toy/Dialect.h @@ -0,0 +1,393 @@ +//===- Dialect.h - Dialect definition for the Toy IR ----------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the IR Dialect for the Toy language. +// See g3doc/Tutorials/Toy/Ch-3.md for more information. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_DIALECT_H_ +#define MLIR_TUTORIAL_TOY_DIALECT_H_ + +#include "mlir/IR/Dialect.h" +#include "mlir/IR/Function.h" +#include "mlir/IR/OpDefinition.h" +#include "mlir/IR/OpImplementation.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/IR/TypeSupport.h" +#include "mlir/IR/Types.h" + +namespace mlir { +class Builder; +} + +namespace toy { + +/// This is the definition of the Toy dialect. A dialect inherits from +/// mlir::Dialect and register custom operations and types (in its constructor). +/// It can also overridding general behavior of dialects exposed as virtual +/// method, for example regarding verification and parsing/printing. +class ToyDialect : public mlir::Dialect { +public: + explicit ToyDialect(mlir::MLIRContext *ctx); + + /// Parse a type registered to this dialect. Overridding this method is + /// required for dialects that have custom types. + /// Technically this is only needed to be able to round-trip to textual IR. + mlir::Type parseType(llvm::StringRef tyData, + mlir::Location loc) const override; + + /// Print a type registered to this dialect. Overridding this method is + /// only required for dialects that have custom types. + /// Technically this is only needed to be able to round-trip to textual IR. + void printType(mlir::Type type, llvm::raw_ostream &os) const override; +}; + +//////////////////////////////////////////////////////////////////////////////// +/////////////////////// Custom Types for the Dialect /////////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +namespace detail { +struct ToyArrayTypeStorage; +} + +/// LLVM-style RTTI: one entry per subclass to allow dyn_cast/isa. +enum ToyTypeKind { + // The enum starts at the range reserved for this dialect. + TOY_TYPE = mlir::Type::FIRST_TOY_TYPE, + TOY_ARRAY, +}; + +/// Type for Toy arrays. +/// In MLIR Types are reference to immutable and uniqued objects owned by the +/// MLIRContext. As such `ToyArrayType` only wraps a pointer to an uniqued +/// instance of `ToyArrayTypeStorage` (defined in our implementation file) and +/// provides the public facade API to interact with the type. +class ToyArrayType : public mlir::Type::TypeBase<ToyArrayType, mlir::Type, + detail::ToyArrayTypeStorage> { +public: + using Base::Base; + + /// Returns the dimensions for this array, or and empty range for a generic + /// array. + llvm::ArrayRef<int64_t> getShape(); + + /// Predicate to test if this array is generic (shape haven't been inferred + /// yet). + bool isGeneric() { return getShape().empty(); } + + /// Return the rank of this array (0 if it is generic). + int getRank() { return getShape().size(); } + + /// Return the type of individual elements in the array. + mlir::Type getElementType(); + + /// Get a MemRef equivalent to this array type. + mlir::MemRefType toMemref(); + + /// Get the unique instance of this Type from the context. + /// A ToyArrayType is only defined by the shape of the array. + static ToyArrayType get(mlir::MLIRContext *context, + llvm::ArrayRef<int64_t> shape = {}); + + /// Support method to enable LLVM-style RTTI type casting. + static bool kindof(unsigned kind) { return kind == ToyTypeKind::TOY_ARRAY; } +}; + +//////////////////////////////////////////////////////////////////////////////// +//////////////////// Custom Operations for the Dialect ///////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +/// Constant operation turns a literal into an SSA value. The data is attached +/// to the operation as an attribute. For example: +/// +/// %0 = "toy.constant"() +/// {value: dense<tensor<2x3xf64>, [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]>} +/// : () -> !toy<"array<2, 3>"> +/// +/// An operation inherits from `class Op` and specifies optional traits. Here we +/// indicate that `toy.constant` does not have any operands and returns a single +/// result. The traits provide some utilities methods for the operation, for +/// instance we will be able to use `getResult()`, but `getOperand()` won't be +/// available. +class ConstantOp : public mlir::Op<ConstantOp, mlir::OpTrait::ZeroOperands, + mlir::OpTrait::OneResult, + mlir::OpTrait::HasNoSideEffect> { +public: + /// This is the name used by MLIR to match an operation to this class during + /// parsing. + static llvm::StringRef getOperationName() { return "toy.constant"; } + + /// The operation can have extra verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::Builder::create<PrintOp>(...) + /// This method populates the `state` that MLIR uses to create operations. + /// The `toy.constant` operation does not have arguments but attaches a + /// constant array as an attribute and returns it as an SSA value. + static void build(mlir::Builder *builder, mlir::OperationState *state, + llvm::ArrayRef<int64_t> shape, + mlir::DenseElementsAttr value); + + /// Similar to the one above, but takes a single float and returns a + /// !toy<"array<1>">. + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::FloatAttr value); + + mlir::DenseElementsAttr getValue() { + return getAttr("value").cast<mlir::DenseElementsAttr>(); + } + + /// Inherit constructor. + using Op::Op; +}; + +/// Generic calls represent calls to a user defined function that needs to +/// be specialized for the shape of its arguments. The callee name is attached +/// as a literal string as an attribute. The arguments list must match the +/// arguments expected by the callee. For example: +/// +/// %4 = "toy.generic_call"(%1, %3) {callee: "my_func"} +/// : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> +/// +/// This is only valid if a function named "my_func" exists and takes two +/// arguments. +class GenericCallOp + : public mlir::Op<GenericCallOp, mlir::OpTrait::VariadicOperands, + mlir::OpTrait::OneResult> { +public: + /// MLIR will use this to register the operation with the parser/printer. + static llvm::StringRef getOperationName() { return "toy.generic_call"; } + + /// Operations can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to the builder to allow: + /// mlir::Builder::create<GenericCallOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.generic_call` operation accepts a callee name and a list of + /// arguments for the call. + static void build(mlir::Builder *builder, mlir::OperationState *state, + llvm::StringRef callee, + llvm::ArrayRef<mlir::Value *> arguments); + + /// Return the name of the callee. + llvm::StringRef getCalleeName(); + + /// Inherit constructor. + using Op::Op; +}; + +/// Return operations terminate blocks (and functions as well). They take a +/// single argument and the type must match the function return type. +class ReturnOp + : public mlir::Op<ReturnOp, mlir::OpTrait::VariadicOperands, + mlir::OpTrait::ZeroResult, mlir::OpTrait::IsTerminator> { +public: + static llvm::StringRef getOperationName() { return "toy.return"; } + + /// Operations can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::Builder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.return` operation accepts an optional single array as an argument + /// and does not have any returned value. + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value = nullptr); + + /// Return true if there is a returned value. + bool hasOperand() { return 0 != getNumOperands(); } + + /// Helper to return the optional operand. Caller must check if the operand + /// is present before calling this. + mlir::Value *getOperand() { return getOperation()->getOperand(0); } + + /// Inherit constructor. + using Op::Op; +}; + +/// The print builtin takes a single array argument and does not return any. +class PrintOp : public mlir::Op<PrintOp, mlir::OpTrait::OneOperand, + mlir::OpTrait::ZeroResult> { +public: + static llvm::StringRef getOperationName() { return "toy.print"; } + + /// Operations can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::Builder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.print` operation accepts a single array as argument and does + /// not have any returned value. + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value); + + /// Inherit constructor. + using Op::Op; +}; + +class TransposeOp : public mlir::Op<TransposeOp, mlir::OpTrait::OneOperand, + mlir::OpTrait::OneResult, + mlir::OpTrait::HasNoSideEffect> { +public: + static llvm::StringRef getOperationName() { return "toy.transpose"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::Builder::create<TransposeOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.transpose` operation accepts a single array as argument and + /// returns the transposed array as its only result. + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value); + + // Register our patterns for rewrite by the Canonicalization framework. + static void + getCanonicalizationPatterns(mlir::OwningRewritePatternList &results, + mlir::MLIRContext *context); + + /// Inherit constructor. + using Op::Op; +}; + +/// Reshape operation is transforming its input array into a new array with the +/// same number of elements but different shapes. For example: +/// +/// %0 = "toy.transpose"(%arg1) : (!toy<"array<10>">) -> !toy<"array<5, 2>"> +/// +class ReshapeOp : public mlir::Op<ReshapeOp, mlir::OpTrait::OneOperand, + mlir::OpTrait::OneResult, + mlir::OpTrait::HasNoSideEffect> { +public: + static llvm::StringRef getOperationName() { return "toy.reshape"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::Builder::create<ReshapeOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.reshape` operation accepts a single array as argument and + /// returns the array with the specified reshapedType as its only result. + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value, ToyArrayType reshapedType); + + // Register our patterns for rewrite by the Canonicalization framework. + static void + getCanonicalizationPatterns(mlir::OwningRewritePatternList &results, + mlir::MLIRContext *context); + + /// Inherit constructor. + using Op::Op; +}; + +/// Binary operation implementing a multiplication. For two-dimensional array +/// a matrix multiplication is implemented, while for one dimensional array a +/// dot product is performed. +class MulOp : public mlir::Op<MulOp, mlir::OpTrait::NOperands<2>::Impl, + mlir::OpTrait::OneResult, + mlir::OpTrait::HasNoSideEffect> { +public: + static llvm::StringRef getOperationName() { return "toy.mul"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::Builder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.mul` operation accepts two operands as argument and returns + /// a single value. + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *lhs, mlir::Value *rhs); + + /// Convenience accessor for LHS of the expression. + mlir::Value *getLHS() { return getOperand(0); } + + /// Convenience accessor for RHS of the expression. + mlir::Value *getRHS() { return getOperand(1); } + + /// Inherit constructor. + using Op::Op; +}; + +/// Element wise addition of two arrays. The shape must match. +class AddOp : public mlir::Op<AddOp, mlir::OpTrait::NOperands<2>::Impl, + mlir::OpTrait::OneResult, + mlir::OpTrait::HasNoSideEffect> { +public: + static llvm::StringRef getOperationName() { return "toy.add"; } + + /// Operation can add custom verification beyond the traits they define. + mlir::LogicalResult verify(); + + /// Interface to mlir::Builder::create<PrintOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// The `toy.mul` operation accepts two operands as argument and returns + /// a single value. + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *lhs, mlir::Value *rhs); + + /// Convenience accessor for LHS of the expression. + mlir::Value *getLHS() { return getOperand(0); } + + /// Convenience accessor for RHS of the expression. + mlir::Value *getRHS() { return getOperand(1); } + + /// Inherit constructor. + using Op::Op; +}; + +/// AllocOp is a temporary operation for buffer allocation, created as part of +/// partial lowering. +class AllocOp : public mlir::Op<AllocOp, mlir::OpTrait::ZeroOperands, + mlir::OpTrait::OneResult> { +public: + static llvm::StringRef getOperationName() { return "toy.alloc"; } + + /// Interface to mlir::Builder::create<AllocOp>(...) + /// This method populate the `state` that MLIR use to create operations. + /// `toy.alloc` does not have any argument and returns a toy array. + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Type retType); + + /// Inherit constructor. + using Op::Op; +}; + +/// FIXME: should be in std? +class TypeCastOp : public mlir::Op<TypeCastOp, mlir::OpTrait::OneOperand, + mlir::OpTrait::OneResult, + mlir::OpTrait::HasNoSideEffect> { +public: + static llvm::StringRef getOperationName() { return "toy.cast"; } + + static void build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value, mlir::Type destTy); + + // Register our patterns for rewrite by the Canonicalization framework. + static void + getCanonicalizationPatterns(mlir::OwningRewritePatternList &results, + mlir::MLIRContext *context); + + /// Inherit constructor. + using Op::Op; +}; + +} // end namespace toy + +#endif // MLIR_TUTORIAL_TOY_DIALECT_H_ diff --git a/include/toy/Lexer.h b/include/toy/Lexer.h new file mode 100644 index 0000000..d73adb9 --- /dev/null +++ b/include/toy/Lexer.h @@ -0,0 +1,239 @@ +//===- Lexer.h - Lexer for the Toy language -------------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements a simple Lexer for the Toy language. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_LEXER_H_ +#define MLIR_TUTORIAL_TOY_LEXER_H_ + +#include "llvm/ADT/StringRef.h" + +#include <memory> +#include <string> + +namespace toy { + +/// Structure definition a location in a file. +struct Location { + std::shared_ptr<std::string> file; ///< filename + int line; ///< line number. + int col; ///< column number. +}; + +// List of Token returned by the lexer. +enum Token : int { + tok_semicolon = ';', + tok_parenthese_open = '(', + tok_parenthese_close = ')', + tok_bracket_open = '{', + tok_bracket_close = '}', + tok_sbracket_open = '[', + tok_sbracket_close = ']', + + tok_eof = -1, + + // commands + tok_return = -2, + tok_var = -3, + tok_def = -4, + + // primary + tok_identifier = -5, + tok_number = -6, +}; + +/// The Lexer is an abstract base class providing all the facilities that the +/// Parser expects. It goes through the stream one token at a time and keeps +/// track of the location in the file for debugging purpose. +/// It relies on a subclass to provide a `readNextLine()` method. The subclass +/// can proceed by reading the next line from the standard input or from a +/// memory mapped file. +class Lexer { +public: + /// Create a lexer for the given filename. The filename is kept only for + /// debugging purpose (attaching a location to a Token). + Lexer(std::string filename) + : lastLocation( + {std::make_shared<std::string>(std::move(filename)), 0, 0}) {} + virtual ~Lexer() = default; + + /// Look at the current token in the stream. + Token getCurToken() { return curTok; } + + /// Move to the next token in the stream and return it. + Token getNextToken() { return curTok = getTok(); } + + /// Move to the next token in the stream, asserting on the current token + /// matching the expectation. + void consume(Token tok) { + assert(tok == curTok && "consume Token mismatch expectation"); + getNextToken(); + } + + /// Return the current identifier (prereq: getCurToken() == tok_identifier) + llvm::StringRef getId() { + assert(curTok == tok_identifier); + return IdentifierStr; + } + + /// Return the current number (prereq: getCurToken() == tok_number) + double getValue() { + assert(curTok == tok_number); + return NumVal; + } + + /// Return the location for the beginning of the current token. + Location getLastLocation() { return lastLocation; } + + // Return the current line in the file. + int getLine() { return curLineNum; } + + // Return the current column in the file. + int getCol() { return curCol; } + +private: + /// Delegate to a derived class fetching the next line. Returns an empty + /// string to signal end of file (EOF). Lines are expected to always finish + /// with "\n" + virtual llvm::StringRef readNextLine() = 0; + + /// Return the next character from the stream. This manages the buffer for the + /// current line and request the next line buffer to the derived class as + /// needed. + int getNextChar() { + // The current line buffer should not be empty unless it is the end of file. + if (curLineBuffer.empty()) + return EOF; + ++curCol; + auto nextchar = curLineBuffer.front(); + curLineBuffer = curLineBuffer.drop_front(); + if (curLineBuffer.empty()) + curLineBuffer = readNextLine(); + if (nextchar == '\n') { + ++curLineNum; + curCol = 0; + } + return nextchar; + } + + /// Return the next token from standard input. + Token getTok() { + // Skip any whitespace. + while (isspace(LastChar)) + LastChar = Token(getNextChar()); + + // Save the current location before reading the token characters. + lastLocation.line = curLineNum; + lastLocation.col = curCol; + + if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9_]* + IdentifierStr = (char)LastChar; + while (isalnum((LastChar = Token(getNextChar()))) || LastChar == '_') + IdentifierStr += (char)LastChar; + + if (IdentifierStr == "return") + return tok_return; + if (IdentifierStr == "def") + return tok_def; + if (IdentifierStr == "var") + return tok_var; + return tok_identifier; + } + + if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ + std::string NumStr; + do { + NumStr += LastChar; + LastChar = Token(getNextChar()); + } while (isdigit(LastChar) || LastChar == '.'); + + NumVal = strtod(NumStr.c_str(), nullptr); + return tok_number; + } + + if (LastChar == '#') { + // Comment until end of line. + do + LastChar = Token(getNextChar()); + while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); + + if (LastChar != EOF) + return getTok(); + } + + // Check for end of file. Don't eat the EOF. + if (LastChar == EOF) + return tok_eof; + + // Otherwise, just return the character as its ascii value. + Token ThisChar = Token(LastChar); + LastChar = Token(getNextChar()); + return ThisChar; + } + + /// The last token read from the input. + Token curTok = tok_eof; + + /// Location for `curTok`. + Location lastLocation; + + /// If the current Token is an identifier, this string contains the value. + std::string IdentifierStr; + + /// If the current Token is a number, this contains the value. + double NumVal = 0; + + /// The last value returned by getNextChar(). We need to keep it around as we + /// always need to read ahead one character to decide when to end a token and + /// we can't put it back in the stream after reading from it. + Token LastChar = Token(' '); + + /// Keep track of the current line number in the input stream + int curLineNum = 0; + + /// Keep track of the current column number in the input stream + int curCol = 0; + + /// Buffer supplied by the derived class on calls to `readNextLine()` + llvm::StringRef curLineBuffer = "\n"; +}; + +/// A lexer implementation operating on a buffer in memory. +class LexerBuffer final : public Lexer { +public: + LexerBuffer(const char *begin, const char *end, std::string filename) + : Lexer(std::move(filename)), current(begin), end(end) {} + +private: + /// Provide one line at a time to the Lexer, return an empty string when + /// reaching the end of the buffer. + llvm::StringRef readNextLine() override { + auto *begin = current; + while (current <= end && *current && *current != '\n') + ++current; + if (current <= end && *current) + ++current; + llvm::StringRef result{begin, static_cast<size_t>(current - begin)}; + return result; + } + const char *current, *end; +}; +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_LEXER_H_ diff --git a/include/toy/Lowering.h b/include/toy/Lowering.h new file mode 100644 index 0000000..362a342 --- /dev/null +++ b/include/toy/Lowering.h @@ -0,0 +1,45 @@ +//===- Lowering.h - Lexer for the Toy language ----------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file exposes the interface to the lowering for Toy. It is divided in +// two parts: an *early lowering* that emits operations in the `Linalg` +// dialects for a subset of the Toy IR, and a *late lowering* that materializes +// buffers and converts all operations and type to the LLVM dialect. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_EXAMPLES_TOY_LOWERING_H_ +#define MLIR_EXAMPLES_TOY_LOWERING_H_ + +#include <memory> + +namespace mlir { +class Pass; +class DialectConversion; +} // namespace mlir + +namespace toy { +/// Create a pass for lowering operations in the `Linalg` dialects, for a subset +/// of the Toy IR (matmul). +mlir::Pass *createEarlyLoweringPass(); + +/// Create a pass for the late lowering toward LLVM dialect. +mlir::Pass *createLateLoweringPass(); + +} // namespace toy + +#endif // MLIR_EXAMPLES_TOY_LOWERING_H_ diff --git a/include/toy/MLIRGen.h b/include/toy/MLIRGen.h new file mode 100644 index 0000000..21637bc --- /dev/null +++ b/include/toy/MLIRGen.h @@ -0,0 +1,42 @@ +//===- MLIRGen.h - MLIR Generation from a Toy AST -------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file declares a simple interface to perform IR generation targeting MLIR +// from a Module AST for the Toy language. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_MLIRGEN_H_ +#define MLIR_TUTORIAL_TOY_MLIRGEN_H_ + +#include <memory> + +namespace mlir { +class MLIRContext; +class Module; +} // namespace mlir + +namespace toy { +class ModuleAST; + +/// Emit IR for the given Toy moduleAST, returns a newly created MLIR module +/// or nullptr on failure. +std::unique_ptr<mlir::Module> mlirGen(mlir::MLIRContext &context, + ModuleAST &moduleAST); +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_MLIRGEN_H_ diff --git a/include/toy/Parser.h b/include/toy/Parser.h new file mode 100644 index 0000000..bc7aa52 --- /dev/null +++ b/include/toy/Parser.h @@ -0,0 +1,494 @@ +//===- Parser.h - Toy Language Parser -------------------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the parser for the Toy language. It processes the Token +// provided by the Lexer and returns an AST. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_PARSER_H +#define MLIR_TUTORIAL_TOY_PARSER_H + +#include "toy/AST.h" +#include "toy/Lexer.h" + +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/raw_ostream.h" + +#include <map> +#include <utility> +#include <vector> + +namespace toy { + +/// This is a simple recursive parser for the Toy language. It produces a well +/// formed AST from a stream of Token supplied by the Lexer. No semantic checks +/// or symbol resolution is performed. For example, variables are referenced by +/// string and the code could reference an undeclared variable and the parsing +/// succeeds. +class Parser { +public: + /// Create a Parser for the supplied lexer. + Parser(Lexer &lexer) : lexer(lexer) {} + + /// Parse a full Module. A module is a list of function definitions. + std::unique_ptr<ModuleAST> ParseModule() { + lexer.getNextToken(); // prime the lexer + + // Parse functions one at a time and accumulate in this vector. + std::vector<FunctionAST> functions; + while (auto F = ParseDefinition()) { + functions.push_back(std::move(*F)); + if (lexer.getCurToken() == tok_eof) + break; + } + // If we didn't reach EOF, there was an error during parsing + if (lexer.getCurToken() != tok_eof) + return parseError<ModuleAST>("nothing", "at end of module"); + + return llvm::make_unique<ModuleAST>(std::move(functions)); + } + +private: + Lexer &lexer; + + /// Parse a return statement. + /// return :== return ; | return expr ; + std::unique_ptr<ReturnExprAST> ParseReturn() { + auto loc = lexer.getLastLocation(); + lexer.consume(tok_return); + + // return takes an optional argument + llvm::Optional<std::unique_ptr<ExprAST>> expr; + if (lexer.getCurToken() != ';') { + expr = ParseExpression(); + if (!expr) + return nullptr; + } + return llvm::make_unique<ReturnExprAST>(std::move(loc), std::move(expr)); + } + + /// Parse a literal number. + /// numberexpr ::= number + std::unique_ptr<ExprAST> ParseNumberExpr() { + auto loc = lexer.getLastLocation(); + auto Result = + llvm::make_unique<NumberExprAST>(std::move(loc), lexer.getValue()); + lexer.consume(tok_number); + return std::move(Result); + } + + /// Parse a literal array expression. + /// tensorLiteral ::= [ literalList ] | number + /// literalList ::= tensorLiteral | tensorLiteral, literalList + std::unique_ptr<ExprAST> ParseTensorLitteralExpr() { + auto loc = lexer.getLastLocation(); + lexer.consume(Token('[')); + + // Hold the list of values at this nesting level. + std::vector<std::unique_ptr<ExprAST>> values; + // Hold the dimensions for all the nesting inside this level. + std::vector<int64_t> dims; + do { + // We can have either another nested array or a number literal. + if (lexer.getCurToken() == '[') { + values.push_back(ParseTensorLitteralExpr()); + if (!values.back()) + return nullptr; // parse error in the nested array. + } else { + if (lexer.getCurToken() != tok_number) + return parseError<ExprAST>("<num> or [", "in literal expression"); + values.push_back(ParseNumberExpr()); + } + + // End of this list on ']' + if (lexer.getCurToken() == ']') + break; + + // Elements are separated by a comma. + if (lexer.getCurToken() != ',') + return parseError<ExprAST>("] or ,", "in literal expression"); + + lexer.getNextToken(); // eat , + } while (true); + if (values.empty()) + return parseError<ExprAST>("<something>", "to fill literal expression"); + lexer.getNextToken(); // eat ] + /// Fill in the dimensions now. First the current nesting level: + dims.push_back(values.size()); + /// If there is any nested array, process all of them and ensure that + /// dimensions are uniform. + if (llvm::any_of(values, [](std::unique_ptr<ExprAST> &expr) { + return llvm::isa<LiteralExprAST>(expr.get()); + })) { + auto *firstLiteral = llvm::dyn_cast<LiteralExprAST>(values.front().get()); + if (!firstLiteral) + return parseError<ExprAST>("uniform well-nested dimensions", + "inside literal expession"); + + // Append the nested dimensions to the current level + auto &firstDims = firstLiteral->getDims(); + dims.insert(dims.end(), firstDims.begin(), firstDims.end()); + + // Sanity check that shape is uniform across all elements of the list. + for (auto &expr : values) { + auto *exprLiteral = llvm::cast<LiteralExprAST>(expr.get()); + if (!exprLiteral) + return parseError<ExprAST>("uniform well-nested dimensions", + "inside literal expession"); + if (exprLiteral->getDims() != firstDims) + return parseError<ExprAST>("uniform well-nested dimensions", + "inside literal expession"); + } + } + return llvm::make_unique<LiteralExprAST>(std::move(loc), std::move(values), + std::move(dims)); + } + + /// parenexpr ::= '(' expression ')' + std::unique_ptr<ExprAST> ParseParenExpr() { + lexer.getNextToken(); // eat (. + auto V = ParseExpression(); + if (!V) + return nullptr; + + if (lexer.getCurToken() != ')') + return parseError<ExprAST>(")", "to close expression with parentheses"); + lexer.consume(Token(')')); + return V; + } + + /// identifierexpr + /// ::= identifier + /// ::= identifier '(' expression ')' + std::unique_ptr<ExprAST> ParseIdentifierExpr() { + std::string name = lexer.getId(); + + auto loc = lexer.getLastLocation(); + lexer.getNextToken(); // eat identifier. + + if (lexer.getCurToken() != '(') // Simple variable ref. + return llvm::make_unique<VariableExprAST>(std::move(loc), name); + + // This is a function call. + lexer.consume(Token('(')); + std::vector<std::unique_ptr<ExprAST>> Args; + if (lexer.getCurToken() != ')') { + while (true) { + if (auto Arg = ParseExpression()) + Args.push_back(std::move(Arg)); + else + return nullptr; + + if (lexer.getCurToken() == ')') + break; + + if (lexer.getCurToken() != ',') + return parseError<ExprAST>(", or )", "in argument list"); + lexer.getNextToken(); + } + } + lexer.consume(Token(')')); + + // It can be a builtin call to print + if (name == "print") { + if (Args.size() != 1) + return parseError<ExprAST>("<single arg>", "as argument to print()"); + + return llvm::make_unique<PrintExprAST>(std::move(loc), + std::move(Args[0])); + } + + // Call to a user-defined function + return llvm::make_unique<CallExprAST>(std::move(loc), name, + std::move(Args)); + } + + /// primary + /// ::= identifierexpr + /// ::= numberexpr + /// ::= parenexpr + /// ::= tensorliteral + std::unique_ptr<ExprAST> ParsePrimary() { + switch (lexer.getCurToken()) { + default: + llvm::errs() << "unknown token '" << lexer.getCurToken() + << "' when expecting an expression\n"; + return nullptr; + case tok_identifier: + return ParseIdentifierExpr(); + case tok_number: + return ParseNumberExpr(); + case '(': + return ParseParenExpr(); + case '[': + return ParseTensorLitteralExpr(); + case ';': + return nullptr; + case '}': + return nullptr; + } + } + + /// Recursively parse the right hand side of a binary expression, the ExprPrec + /// argument indicates the precedence of the current binary operator. + /// + /// binoprhs ::= ('+' primary)* + std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, + std::unique_ptr<ExprAST> LHS) { + // If this is a binop, find its precedence. + while (true) { + int TokPrec = GetTokPrecedence(); + + // If this is a binop that binds at least as tightly as the current binop, + // consume it, otherwise we are done. + if (TokPrec < ExprPrec) + return LHS; + + // Okay, we know this is a binop. + int BinOp = lexer.getCurToken(); + lexer.consume(Token(BinOp)); + auto loc = lexer.getLastLocation(); + + // Parse the primary expression after the binary operator. + auto RHS = ParsePrimary(); + if (!RHS) + return parseError<ExprAST>("expression", "to complete binary operator"); + + // If BinOp binds less tightly with RHS than the operator after RHS, let + // the pending operator take RHS as its LHS. + int NextPrec = GetTokPrecedence(); + if (TokPrec < NextPrec) { + RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS)); + if (!RHS) + return nullptr; + } + + // Merge LHS/RHS. + LHS = llvm::make_unique<BinaryExprAST>(std::move(loc), BinOp, + std::move(LHS), std::move(RHS)); + } + } + + /// expression::= primary binoprhs + std::unique_ptr<ExprAST> ParseExpression() { + auto LHS = ParsePrimary(); + if (!LHS) + return nullptr; + + return ParseBinOpRHS(0, std::move(LHS)); + } + + /// type ::= < shape_list > + /// shape_list ::= num | num , shape_list + std::unique_ptr<VarType> ParseType() { + if (lexer.getCurToken() != '<') + return parseError<VarType>("<", "to begin type"); + lexer.getNextToken(); // eat < + + auto type = llvm::make_unique<VarType>(); + + while (lexer.getCurToken() == tok_number) { + type->shape.push_back(lexer.getValue()); + lexer.getNextToken(); + if (lexer.getCurToken() == ',') + lexer.getNextToken(); + } + + if (lexer.getCurToken() != '>') + return parseError<VarType>(">", "to end type"); + lexer.getNextToken(); // eat > + return type; + } + + /// Parse a variable declaration, it starts with a `var` keyword followed by + /// and identifier and an optional type (shape specification) before the + /// initializer. + /// decl ::= var identifier [ type ] = expr + std::unique_ptr<VarDeclExprAST> ParseDeclaration() { + if (lexer.getCurToken() != tok_var) + return parseError<VarDeclExprAST>("var", "to begin declaration"); + auto loc = lexer.getLastLocation(); + lexer.getNextToken(); // eat var + + if (lexer.getCurToken() != tok_identifier) + return parseError<VarDeclExprAST>("identified", + "after 'var' declaration"); + std::string id = lexer.getId(); + lexer.getNextToken(); // eat id + + std::unique_ptr<VarType> type; // Type is optional, it can be inferred + if (lexer.getCurToken() == '<') { + type = ParseType(); + if (!type) + return nullptr; + } + + if (!type) + type = llvm::make_unique<VarType>(); + lexer.consume(Token('=')); + auto expr = ParseExpression(); + return llvm::make_unique<VarDeclExprAST>(std::move(loc), std::move(id), + std::move(*type), std::move(expr)); + } + + /// Parse a block: a list of expression separated by semicolons and wrapped in + /// curly braces. + /// + /// block ::= { expression_list } + /// expression_list ::= block_expr ; expression_list + /// block_expr ::= decl | "return" | expr + std::unique_ptr<ExprASTList> ParseBlock() { + if (lexer.getCurToken() != '{') + return parseError<ExprASTList>("{", "to begin block"); + lexer.consume(Token('{')); + + auto exprList = llvm::make_unique<ExprASTList>(); + + // Ignore empty expressions: swallow sequences of semicolons. + while (lexer.getCurToken() == ';') + lexer.consume(Token(';')); + + while (lexer.getCurToken() != '}' && lexer.getCurToken() != tok_eof) { + if (lexer.getCurToken() == tok_var) { + // Variable declaration + auto varDecl = ParseDeclaration(); + if (!varDecl) + return nullptr; + exprList->push_back(std::move(varDecl)); + } else if (lexer.getCurToken() == tok_return) { + // Return statement + auto ret = ParseReturn(); + if (!ret) + return nullptr; + exprList->push_back(std::move(ret)); + } else { + // General expression + auto expr = ParseExpression(); + if (!expr) + return nullptr; + exprList->push_back(std::move(expr)); + } + // Ensure that elements are separated by a semicolon. + if (lexer.getCurToken() != ';') + return parseError<ExprASTList>(";", "after expression"); + + // Ignore empty expressions: swallow sequences of semicolons. + while (lexer.getCurToken() == ';') + lexer.consume(Token(';')); + } + + if (lexer.getCurToken() != '}') + return parseError<ExprASTList>("}", "to close block"); + + lexer.consume(Token('}')); + return exprList; + } + + /// prototype ::= def id '(' decl_list ')' + /// decl_list ::= identifier | identifier, decl_list + std::unique_ptr<PrototypeAST> ParsePrototype() { + auto loc = lexer.getLastLocation(); + lexer.consume(tok_def); + if (lexer.getCurToken() != tok_identifier) + return parseError<PrototypeAST>("function name", "in prototype"); + + std::string FnName = lexer.getId(); + lexer.consume(tok_identifier); + + if (lexer.getCurToken() != '(') + return parseError<PrototypeAST>("(", "in prototype"); + lexer.consume(Token('(')); + + std::vector<std::unique_ptr<VariableExprAST>> args; + if (lexer.getCurToken() != ')') { + do { + std::string name = lexer.getId(); + auto loc = lexer.getLastLocation(); + lexer.consume(tok_identifier); + auto decl = llvm::make_unique<VariableExprAST>(std::move(loc), name); + args.push_back(std::move(decl)); + if (lexer.getCurToken() != ',') + break; + lexer.consume(Token(',')); + if (lexer.getCurToken() != tok_identifier) + return parseError<PrototypeAST>( + "identifier", "after ',' in function parameter list"); + } while (true); + } + if (lexer.getCurToken() != ')') + return parseError<PrototypeAST>("}", "to end function prototype"); + + // success. + lexer.consume(Token(')')); + return llvm::make_unique<PrototypeAST>(std::move(loc), FnName, + std::move(args)); + } + + /// Parse a function definition, we expect a prototype initiated with the + /// `def` keyword, followed by a block containing a list of expressions. + /// + /// definition ::= prototype block + std::unique_ptr<FunctionAST> ParseDefinition() { + auto Proto = ParsePrototype(); + if (!Proto) + return nullptr; + + if (auto block = ParseBlock()) + return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(block)); + return nullptr; + } + + /// Get the precedence of the pending binary operator token. + int GetTokPrecedence() { + if (!isascii(lexer.getCurToken())) + return -1; + + // 1 is lowest precedence. + switch (static_cast<char>(lexer.getCurToken())) { + case '-': + return 20; + case '+': + return 20; + case '*': + return 40; + default: + return -1; + } + } + + /// Helper function to signal errors while parsing, it takes an argument + /// indicating the expected token and another argument giving more context. + /// Location is retrieved from the lexer to enrich the error message. + template <typename R, typename T, typename U = const char *> + std::unique_ptr<R> parseError(T &&expected, U &&context = "") { + auto curToken = lexer.getCurToken(); + llvm::errs() << "Parse error (" << lexer.getLastLocation().line << ", " + << lexer.getLastLocation().col << "): expected '" << expected + << "' " << context << " but has Token " << curToken; + if (isprint(curToken)) + llvm::errs() << " '" << (char)curToken << "'"; + llvm::errs() << "\n"; + return nullptr; + } +}; + +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_PARSER_H diff --git a/include/toy/Passes.h b/include/toy/Passes.h new file mode 100644 index 0000000..dd73b95 --- /dev/null +++ b/include/toy/Passes.h @@ -0,0 +1,33 @@ +//===- Passes.h - Toy Passes Definition -----------------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file exposes the entry points to create compiler passes for Toy. +// +//===----------------------------------------------------------------------===// + +#ifndef MLIR_TUTORIAL_TOY_PASSES_H +#define MLIR_TUTORIAL_TOY_PASSES_H + +namespace mlir { +class Pass; +} // namespace mlir + +namespace toy { +mlir::Pass *createShapeInferencePass(); +} // namespace toy + +#endif // MLIR_TUTORIAL_TOY_PASSES_H |