summaryrefslogtreecommitdiff
path: root/mlir
diff options
context:
space:
mode:
Diffstat (limited to 'mlir')
-rw-r--r--mlir/EarlyLowering.cpp158
-rw-r--r--mlir/LateLowering.cpp452
-rw-r--r--mlir/MLIRGen.cpp480
-rw-r--r--mlir/ShapeInferencePass.cpp387
-rw-r--r--mlir/ToyCombine.cpp209
-rw-r--r--mlir/ToyDialect.cpp405
6 files changed, 2091 insertions, 0 deletions
diff --git a/mlir/EarlyLowering.cpp b/mlir/EarlyLowering.cpp
new file mode 100644
index 0000000..634c72e
--- /dev/null
+++ b/mlir/EarlyLowering.cpp
@@ -0,0 +1,158 @@
+//=======- EarlyLowering.cpp - Toy Lowering to Linear Algebra Dialect -=======//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+//
+// This file implements early lowering of Toy IR to Linalg Dialect: we only
+// lower the computationally intensive part of the program (matmul...) to a
+// dialect specialized for optimizations.
+//
+// This is intended to showcase how multiple dialects can cohabit in the same
+// function. After this lowering, you would still have toy.print in the IR for
+// example.
+//
+//===----------------------------------------------------------------------===//
+
+#include "toy/Dialect.h"
+
+#include "linalg3/Intrinsics.h"
+#include "linalg1/ViewOp.h"
+#include "linalg3/TensorOps.h"
+#include "mlir/EDSC/Builders.h"
+#include "mlir/EDSC/Helpers.h"
+#include "mlir/EDSC/Intrinsics.h"
+#include "mlir/IR/Builders.h"
+#include "mlir/IR/OperationSupport.h"
+#include "mlir/IR/StandardTypes.h"
+#include "mlir/LLVMIR/LLVMDialect.h"
+#include "mlir/Parser.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/Transforms/DialectConversion.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Type.h"
+
+#include <algorithm>
+
+using namespace mlir;
+
+namespace {
+/// Utility function for type casting: this is making the type checker happy,
+/// while delaying the actual work involved to convert the type. Most of the
+/// time both side of the cast (producer and consumer) will be lowered to a
+/// dialect like LLVM and end up with the same LLVM representation, at which
+/// point this becomes a no-op and is eliminated.
+Value *typeCast(FuncBuilder &builder, Value *val, Type destTy) {
+ if (val->getType() == destTy)
+ return val;
+ return builder.create<toy::TypeCastOp>(val->getLoc(), val, destTy)
+ .getResult();
+}
+
+/// Create a type cast to turn a toy.array into a memref. The Toy Array will be
+/// lowered to a memref during buffer allocation, at which point the type cast
+/// becomes useless.
+Value *memRefTypeCast(FuncBuilder &builder, Value *val) {
+ if (val->getType().isa<MemRefType>())
+ return val;
+ auto toyArrayTy = val->getType().dyn_cast<toy::ToyArrayType>();
+ if (!toyArrayTy)
+ return val;
+ return typeCast(builder, val, toyArrayTy.toMemref());
+}
+
+/// Lower toy.mul to Linalg `matmul`.
+///
+/// This class inherit from `DialectOpConversion` and override `rewrite`,
+/// similarly to the PatternRewriter introduced in the previous chapter.
+/// It will be called by the DialectConversion framework (see `LateLowering`
+/// class below).
+class MulOpConversion : public DialectOpConversion {
+public:
+ explicit MulOpConversion(MLIRContext *context)
+ : DialectOpConversion(toy::MulOp::getOperationName(), 1, context) {}
+
+ SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands,
+ FuncBuilder &rewriter) const override {
+ using namespace edsc;
+ using intrinsics::constant_index;
+ using linalg::intrinsics::range;
+ using linalg::intrinsics::view;
+ toy::MulOp mul = op->cast<toy::MulOp>();
+ auto loc = mul.getLoc();
+ Value *result = memRefTypeCast(
+ rewriter, rewriter.create<toy::AllocOp>(loc, mul.getResult()->getType())
+ .getResult());
+ Value *lhs = memRefTypeCast(rewriter, operands[0]);
+ auto memrefLHSTy = lhs->getType().cast<MemRefType>();
+ Value *rhs = memRefTypeCast(rewriter, operands[1]);
+ auto memrefRHSTy = rhs->getType().cast<MemRefType>();
+ mlir::edsc::ScopedContext scope(rewriter, loc);
+ edsc::ValueHandle r0 =
+ range(constant_index(0), constant_index(memrefLHSTy.getDimSize(0)),
+ constant_index(1));
+ edsc::ValueHandle r1 =
+ range(constant_index(0), constant_index(memrefLHSTy.getDimSize(1)),
+ constant_index(1));
+ edsc::ValueHandle r2 =
+ range(constant_index(0), constant_index(memrefRHSTy.getDimSize(1)),
+ constant_index(1));
+ auto lhsView = view(lhs, {r0, r1});
+ auto rhsView = view(rhs, {r1, r2});
+ auto resultView = view(result, {r0, r2});
+ rewriter.create<linalg::MatmulOp>(loc, lhsView, rhsView, resultView);
+ return {typeCast(rewriter, result, mul.getType())};
+ }
+};
+
+// The conversion class from Toy IR Dialect to a mix of Linalg and LLVM.
+class EarlyLowering : public DialectConversion {
+protected:
+ // Initialize the list of converters.
+ llvm::DenseSet<DialectOpConversion *>
+ initConverters(MLIRContext *context) override {
+ return ConversionListBuilder<MulOpConversion>::build(&allocator, context);
+ }
+
+private:
+ llvm::BumpPtrAllocator allocator;
+};
+
+/// This is lowering to Linalg the parts that are computationally intensive
+/// (like matmul for example...) while keeping the rest of the code in the Toy
+/// dialect.
+struct EarlyLoweringPass : public ModulePass<EarlyLoweringPass> {
+
+ void runOnModule() override {
+ if (failed(EarlyLowering().convert(&getModule()))) {
+ getModule().getContext()->emitError(
+ mlir::UnknownLoc::get(getModule().getContext()),
+ "Error lowering Toy\n");
+ signalPassFailure();
+ }
+ }
+};
+} // end anonymous namespace
+
+namespace toy {
+Pass *createEarlyLoweringPass() { return new EarlyLoweringPass(); }
+
+std::unique_ptr<mlir::DialectConversion> makeToyEarlyLowering() {
+ return llvm::make_unique<EarlyLowering>();
+}
+
+} // namespace toy
diff --git a/mlir/LateLowering.cpp b/mlir/LateLowering.cpp
new file mode 100644
index 0000000..eeae6ee
--- /dev/null
+++ b/mlir/LateLowering.cpp
@@ -0,0 +1,452 @@
+//====- LateLowering.cpp - Lowering from Toy+Linalg to LLVM -===//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+//
+// This file implements late lowering of IR mixing Toy and Linalg to LLVM.
+// It involves intemerdiate steps:
+// -
+// - a mix of affine and standard dialect.
+//
+//===----------------------------------------------------------------------===//
+
+#include "toy/Dialect.h"
+
+#include "linalg3/Intrinsics.h"
+#include "linalg1/ViewOp.h"
+#include "linalg3/ConvertToLLVMDialect.h"
+#include "linalg3/TensorOps.h"
+#include "linalg3/Transforms.h"
+#include "mlir/EDSC/Builders.h"
+#include "mlir/EDSC/Helpers.h"
+#include "mlir/EDSC/Intrinsics.h"
+#include "mlir/IR/Builders.h"
+#include "mlir/IR/OperationSupport.h"
+#include "mlir/IR/StandardTypes.h"
+#include "mlir/LLVMIR/LLVMDialect.h"
+#include "mlir/Parser.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/Transforms/DialectConversion.h"
+
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Type.h"
+
+#include <algorithm>
+
+using namespace mlir;
+
+namespace {
+/// Utility function for type casting: this is making the type checker happy,
+/// while delaying the actual work involved to convert the type. Most of the
+/// time both side of the cast (producer and consumer) will be lowered to a
+/// dialect like LLVM and end up with the same LLVM representation, at which
+/// point this becomes a no-op and is eliminated.
+Value *typeCast(FuncBuilder &builder, Value *val, Type destTy) {
+ if (val->getType() == destTy)
+ return val;
+ return builder.create<toy::TypeCastOp>(val->getLoc(), val, destTy)
+ .getResult();
+}
+
+/// Create a type cast to turn a toy.array into a memref. The Toy Array will be
+/// lowered to a memref during buffer allocation, at which point the type cast
+/// becomes useless.
+Value *memRefTypeCast(FuncBuilder &builder, Value *val) {
+ if (val->getType().isa<MemRefType>())
+ return val;
+ auto toyArrayTy = val->getType().dyn_cast<toy::ToyArrayType>();
+ if (!toyArrayTy)
+ return val;
+ return typeCast(builder, val, toyArrayTy.toMemref());
+}
+
+/// Lower a toy.add to an affine loop nest.
+///
+/// This class inherit from `DialectOpConversion` and override `rewrite`,
+/// similarly to the PatternRewriter introduced in the previous chapter.
+/// It will be called by the DialectConversion framework (see `LateLowering`
+/// class below).
+class AddOpConversion : public DialectOpConversion {
+public:
+ explicit AddOpConversion(MLIRContext *context)
+ : DialectOpConversion(toy::AddOp::getOperationName(), 1, context) {}
+
+ /// Lower the `op` by generating IR using the `rewriter` builder. The builder
+ /// is setup with a new function, the `operands` array has been populated with
+ /// the rewritten operands for `op` in the new function.
+ /// The results created by the new IR with the builder are returned, and their
+ /// number must match the number of result of `op`.
+ SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands,
+ FuncBuilder &rewriter) const override {
+ auto add = op->cast<toy::AddOp>();
+ auto loc = add.getLoc();
+ // Create a `toy.alloc` operation to allocate the output buffer for this op.
+ Value *result = memRefTypeCast(
+ rewriter, rewriter.create<toy::AllocOp>(loc, add.getResult()->getType())
+ .getResult());
+ Value *lhs = memRefTypeCast(rewriter, operands[0]);
+ Value *rhs = memRefTypeCast(rewriter, operands[1]);
+
+ using namespace edsc;
+ ScopedContext scope(rewriter, loc);
+ ValueHandle zero = intrinsics::constant_index(0);
+ MemRefView vRes(result), vLHS(lhs), vRHS(rhs);
+ IndexedValue iRes(result), iLHS(lhs), iRHS(rhs);
+ IndexHandle i, j, M(vRes.ub(0));
+ if (vRes.rank() == 1) {
+ LoopNestBuilder({&i}, {zero}, {M}, {1})({iRes(i) = iLHS(i) + iRHS(i)});
+ } else {
+ assert(vRes.rank() == 2 && "only rank 1 and 2 are supported right now");
+ IndexHandle N(vRes.ub(1));
+ LoopNestBuilder({&i, &j}, {zero, zero}, {M, N},
+ {1, 1})({iRes(i, j) = iLHS(i, j) + iRHS(i, j)});
+ }
+
+ // Return the newly allocated buffer, with a type.cast to preserve the
+ // consumers.
+ return {typeCast(rewriter, result, add.getType())};
+ }
+};
+
+/// Lowers `toy.print` to a loop nest calling `printf` on every individual
+/// elements of the array.
+class PrintOpConversion : public DialectOpConversion {
+public:
+ explicit PrintOpConversion(MLIRContext *context)
+ : DialectOpConversion(toy::PrintOp::getOperationName(), 1, context) {}
+
+ SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands,
+ FuncBuilder &rewriter) const override {
+ // Get or create the declaration of the printf function in the module.
+ Function *printfFunc = getPrintf(*op->getFunction()->getModule());
+
+ auto print = op->cast<toy::PrintOp>();
+ auto loc = print.getLoc();
+ // We will operate on a MemRef abstraction, we use a type.cast to get one
+ // if our operand is still a Toy array.
+ Value *operand = memRefTypeCast(rewriter, operands[0]);
+ Type retTy = printfFunc->getType().getResult(0);
+
+ // Create our loop nest now
+ using namespace edsc;
+ using llvmCall = intrinsics::ValueBuilder<LLVM::CallOp>;
+ ScopedContext scope(rewriter, loc);
+ ValueHandle zero = intrinsics::constant_index(0);
+ ValueHandle fmtCst(getConstantCharBuffer(rewriter, loc, "%f "));
+ MemRefView vOp(operand);
+ IndexedValue iOp(operand);
+ IndexHandle i, j, M(vOp.ub(0));
+
+ ValueHandle fmtEol(getConstantCharBuffer(rewriter, loc, "\n"));
+ if (vOp.rank() == 1) {
+ // clang-format off
+ LoopBuilder(&i, zero, M, 1)({
+ llvmCall(retTy,
+ rewriter.getFunctionAttr(printfFunc),
+ {fmtCst, iOp(i)})
+ });
+ llvmCall(retTy, rewriter.getFunctionAttr(printfFunc), {fmtEol});
+ // clang-format on
+ } else {
+ IndexHandle N(vOp.ub(1));
+ // clang-format off
+ LoopBuilder(&i, zero, M, 1)({
+ LoopBuilder(&j, zero, N, 1)({
+ llvmCall(retTy,
+ rewriter.getFunctionAttr(printfFunc),
+ {fmtCst, iOp(i, j)})
+ }),
+ llvmCall(retTy, rewriter.getFunctionAttr(printfFunc), {fmtEol})
+ });
+ // clang-format on
+ }
+ return {};
+ }
+
+private:
+ // Turn a string into a toy.alloc (malloc/free abstraction) and a sequence
+ // of stores into the buffer, and return a MemRef into the buffer.
+ Value *getConstantCharBuffer(FuncBuilder &builder, Location loc,
+ StringRef data) const {
+ auto retTy =
+ builder.getMemRefType(data.size() + 1, builder.getIntegerType(8));
+ Value *result = builder.create<toy::AllocOp>(loc, retTy).getResult();
+ using namespace edsc;
+ using intrinsics::constant_index;
+ using intrinsics::constant_int;
+ ScopedContext scope(builder, loc);
+ MemRefView vOp(result);
+ IndexedValue iOp(result);
+ for (uint64_t i = 0; i < data.size(); ++i) {
+ iOp(constant_index(i)) = constant_int(data[i], 8);
+ }
+ iOp(constant_index(data.size())) = constant_int(0, 8);
+ return result;
+ }
+
+ /// Return the prototype declaration for printf in the module, create it if
+ /// necessary.
+ Function *getPrintf(Module &module) const {
+ auto *printfFunc = module.getNamedFunction("printf");
+ if (printfFunc)
+ return printfFunc;
+
+ // Create a function declaration for printf, signature is `i32 (i8*, ...)`
+ Builder builder(&module);
+ MLIRContext *context = module.getContext();
+ LLVM::LLVMDialect *llvmDialect = static_cast<LLVM::LLVMDialect *>(
+ module.getContext()->getRegisteredDialect("llvm"));
+ auto &llvmModule = llvmDialect->getLLVMModule();
+ llvm::IRBuilder<> llvmBuilder(llvmModule.getContext());
+
+ auto llvmI32Ty = LLVM::LLVMType::get(context, llvmBuilder.getIntNTy(32));
+ auto llvmI8PtrTy =
+ LLVM::LLVMType::get(context, llvmBuilder.getIntNTy(8)->getPointerTo());
+ auto printfTy = builder.getFunctionType({llvmI8PtrTy}, {llvmI32Ty});
+ printfFunc = new Function(builder.getUnknownLoc(), "printf", printfTy);
+ // It should be variadic, but we don't support it fully just yet.
+ printfFunc->setAttr("std.varargs", builder.getBoolAttr(true));
+ module.getFunctions().push_back(printfFunc);
+ return printfFunc;
+ }
+};
+
+/// Lowers constant to a sequence of store in a buffer.
+class ConstantOpConversion : public DialectOpConversion {
+public:
+ explicit ConstantOpConversion(MLIRContext *context)
+ : DialectOpConversion(toy::ConstantOp::getOperationName(), 1, context) {}
+
+ SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands,
+ FuncBuilder &rewriter) const override {
+ toy::ConstantOp cstOp = op->cast<toy::ConstantOp>();
+ auto loc = cstOp.getLoc();
+ auto retTy = cstOp.getResult()->getType().cast<toy::ToyArrayType>();
+ auto shape = retTy.getShape();
+ Value *result = memRefTypeCast(
+ rewriter, rewriter.create<toy::AllocOp>(loc, retTy).getResult());
+
+ auto cstValue = cstOp.getValue();
+ auto f64Ty = rewriter.getF64Type();
+ using namespace edsc;
+ using intrinsics::constant_float;
+ using intrinsics::constant_index;
+ ScopedContext scope(rewriter, loc);
+ MemRefView vOp(result);
+ IndexedValue iOp(result);
+ for (uint64_t i = 0; i < shape[0]; ++i) {
+ if (shape.size() == 1) {
+ auto value = cstValue.getValue(ArrayRef<uint64_t>{i})
+ .cast<FloatAttr>()
+ .getValue();
+ iOp(constant_index(i)) = constant_float(value, f64Ty);
+ continue;
+ }
+ for (uint64_t j = 0; j < shape[1]; ++j) {
+ auto value = cstValue.getValue(ArrayRef<uint64_t>{i, j})
+ .cast<FloatAttr>()
+ .getValue();
+ iOp(constant_index(i), constant_index(j)) =
+ constant_float(value, f64Ty);
+ }
+ }
+ return {result};
+ }
+};
+
+/// Lower transpose operation to an affine loop nest.
+class TransposeOpConversion : public DialectOpConversion {
+public:
+ explicit TransposeOpConversion(MLIRContext *context)
+ : DialectOpConversion(toy::TransposeOp::getOperationName(), 1, context) {}
+
+ SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands,
+ FuncBuilder &rewriter) const override {
+ auto transpose = op->cast<toy::TransposeOp>();
+ auto loc = transpose.getLoc();
+ Value *result = memRefTypeCast(
+ rewriter,
+ rewriter.create<toy::AllocOp>(loc, transpose.getResult()->getType())
+ .getResult());
+ Value *operand = memRefTypeCast(rewriter, operands[0]);
+
+ using namespace edsc;
+ ScopedContext scope(rewriter, loc);
+ ValueHandle zero = intrinsics::constant_index(0);
+ MemRefView vRes(result), vOperand(operand);
+ IndexedValue iRes(result), iOperand(operand);
+ IndexHandle i, j, M(vRes.ub(0)), N(vRes.ub(1));
+ // clang-format off
+ LoopNestBuilder({&i, &j}, {zero, zero}, {M, N}, {1, 1})({
+ iRes(i, j) = iOperand(j, i)
+ });
+ // clang-format on
+
+ return {typeCast(rewriter, result, transpose.getType())};
+ }
+};
+
+// Lower toy.return to standard return operation.
+class ReturnOpConversion : public DialectOpConversion {
+public:
+ explicit ReturnOpConversion(MLIRContext *context)
+ : DialectOpConversion(toy::ReturnOp::getOperationName(), 1, context) {}
+
+ SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands,
+ FuncBuilder &rewriter) const override {
+ auto retOp = op->cast<toy::ReturnOp>();
+ using namespace edsc;
+ auto loc = retOp.getLoc();
+ // Argument is optional, handle both cases.
+ if (retOp.getNumOperands())
+ rewriter.create<ReturnOp>(loc, operands[0]);
+ else
+ rewriter.create<ReturnOp>(loc);
+ return {};
+ }
+};
+
+/// This is the main class registering our individual converter classes with
+/// the DialectConversion framework in MLIR.
+class LateLowering : public DialectConversion {
+protected:
+ /// Initialize the list of converters.
+ llvm::DenseSet<DialectOpConversion *>
+ initConverters(MLIRContext *context) override {
+ return ConversionListBuilder<AddOpConversion, PrintOpConversion,
+ ConstantOpConversion, TransposeOpConversion,
+ ReturnOpConversion>::build(&allocator,
+ context);
+ }
+
+ /// Convert a Toy type, this gets called for block and region arguments, and
+ /// attributes.
+ Type convertType(Type t) override {
+ if (auto array = t.cast<toy::ToyArrayType>()) {
+ return array.toMemref();
+ }
+ return t;
+ }
+
+private:
+ llvm::BumpPtrAllocator allocator;
+};
+
+/// This is lowering to Linalg the parts that can be (matmul and add on arrays)
+/// and is targeting LLVM otherwise.
+struct LateLoweringPass : public ModulePass<LateLoweringPass> {
+
+ void runOnModule() override {
+ // Perform Toy specific lowering
+ if (failed(LateLowering().convert(&getModule()))) {
+ getModule().getContext()->emitError(
+ UnknownLoc::get(getModule().getContext()), "Error lowering Toy\n");
+ signalPassFailure();
+ }
+ // At this point the IR is almost using only standard and affine dialects.
+ // A few things remain before we emit LLVM IR. First to reuse as much of
+ // MLIR as possible we will try to lower everything to the standard and/or
+ // affine dialect: they already include conversion to the LLVM dialect.
+
+ // First patch calls type to return memref instead of ToyArray
+ for (auto &function : getModule()) {
+ function.walk([&](Operation *op) {
+ auto callOp = op->dyn_cast<CallOp>();
+ if (!callOp)
+ return;
+ if (!callOp.getNumResults())
+ return;
+ auto retToyTy =
+ callOp.getResult(0)->getType().dyn_cast<toy::ToyArrayType>();
+ if (!retToyTy)
+ return;
+ callOp.getResult(0)->setType(retToyTy.toMemref());
+ });
+ }
+
+ for (auto &function : getModule()) {
+ function.walk([&](Operation *op) {
+ // Turns toy.alloc into sequence of alloc/dealloc (later malloc/free).
+ if (auto allocOp = op->dyn_cast<toy::AllocOp>()) {
+ auto result = allocTensor(allocOp);
+ allocOp.replaceAllUsesWith(result);
+ allocOp.erase();
+ return;
+ }
+ // Eliminate all type.cast before lowering to LLVM.
+ if (auto typeCastOp = op->dyn_cast<toy::TypeCastOp>()) {
+ typeCastOp.replaceAllUsesWith(typeCastOp.getOperand());
+ typeCastOp.erase();
+ return;
+ }
+ });
+ }
+
+ // Lower Linalg to affine
+ for (auto &function : getModule())
+ linalg::lowerToLoops(&function);
+
+ getModule().dump();
+
+ // Finally convert to LLVM Dialect
+ linalg::convertLinalg3ToLLVM(getModule());
+ }
+
+ /// Allocate buffers (malloc/free) for Toy operations. This can't be done as
+ /// part of dialect conversion framework since we need to insert `dealloc`
+ /// operations just before the return, but the conversion framework is
+ /// operating in a brand new function: we don't have the return to hook the
+ /// dealloc operations.
+ Value *allocTensor(toy::AllocOp alloc) {
+ FuncBuilder builder(alloc);
+ auto retTy = alloc.getResult()->getType();
+
+ auto memRefTy = retTy.dyn_cast<MemRefType>();
+ if (!memRefTy)
+ memRefTy = retTy.cast<toy::ToyArrayType>().toMemref();
+ if (!memRefTy) {
+ alloc.emitOpError("is expected to allocate a Toy array or a MemRef");
+ llvm_unreachable("fatal error");
+ }
+ auto loc = alloc.getLoc();
+ Value *result = builder.create<AllocOp>(loc, memRefTy).getResult();
+
+ // Insert a `dealloc` operation right before the `return` operations, unless
+ // it is returned itself in which case the caller is responsible for it.
+ builder.getFunction()->walk([&](Operation *op) {
+ auto returnOp = op->dyn_cast<ReturnOp>();
+ if (!returnOp)
+ return;
+ if (returnOp.getNumOperands() && returnOp.getOperand(0) == alloc)
+ return;
+ builder.setInsertionPoint(returnOp);
+ builder.create<DeallocOp>(alloc.getLoc(), result);
+ });
+ return result;
+ }
+};
+} // end anonymous namespace
+
+namespace toy {
+Pass *createLateLoweringPass() { return new LateLoweringPass(); }
+
+std::unique_ptr<DialectConversion> makeToyLateLowering() {
+ return llvm::make_unique<LateLowering>();
+}
+
+} // namespace toy
diff --git a/mlir/MLIRGen.cpp b/mlir/MLIRGen.cpp
new file mode 100644
index 0000000..e2001fb
--- /dev/null
+++ b/mlir/MLIRGen.cpp
@@ -0,0 +1,480 @@
+//===- MLIRGen.cpp - MLIR Generation from a Toy AST -----------------------===//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+//
+// This file implements a simple IR generation targeting MLIR from a Module AST
+// for the Toy language.
+//
+//===----------------------------------------------------------------------===//
+
+#include "toy/MLIRGen.h"
+#include "toy/AST.h"
+#include "toy/Dialect.h"
+
+#include "mlir/IR/Attributes.h"
+#include "mlir/IR/Builders.h"
+#include "mlir/IR/Location.h"
+#include "mlir/IR/MLIRContext.h"
+#include "mlir/IR/Module.h"
+#include "mlir/IR/StandardTypes.h"
+#include "mlir/IR/Types.h"
+#include "mlir/StandardOps/Ops.h"
+
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/ScopedHashTable.h"
+#include "llvm/Support/raw_ostream.h"
+#include <numeric>
+
+using namespace toy;
+using llvm::cast;
+using llvm::dyn_cast;
+using llvm::isa;
+using llvm::make_unique;
+using llvm::ScopedHashTableScope;
+using llvm::SmallVector;
+using llvm::StringRef;
+using llvm::Twine;
+
+namespace {
+
+/// Implementation of a simple MLIR emission from the Toy AST.
+///
+/// This will emit operations that are specific to the Toy language, preserving
+/// the semantics of the language and (hopefully) allow to perform accurate
+/// analysis and transformation based on these high level semantics.
+///
+/// At this point we take advantage of the "raw" MLIR APIs to create operations
+/// that haven't been registered in any way with MLIR. These operations are
+/// unknown to MLIR, custom passes could operate by string-matching the name of
+/// these operations, but no other type checking or semantic is associated with
+/// them natively by MLIR.
+class MLIRGenImpl {
+public:
+ MLIRGenImpl(mlir::MLIRContext &context) : context(context) {}
+
+ /// Public API: convert the AST for a Toy module (source file) to an MLIR
+ /// Module.
+ std::unique_ptr<mlir::Module> mlirGen(ModuleAST &moduleAST) {
+ // We create an empty MLIR module and codegen functions one at a time and
+ // add them to the module.
+ theModule = make_unique<mlir::Module>(&context);
+
+ for (FunctionAST &F : moduleAST) {
+ auto func = mlirGen(F);
+ if (!func)
+ return nullptr;
+ theModule->getFunctions().push_back(func.release());
+ }
+
+ // FIXME: (in the next chapter...) without registering a dialect in MLIR,
+ // this won't do much, but it should at least check some structural
+ // properties.
+ if (failed(theModule->verify())) {
+ context.emitError(mlir::UnknownLoc::get(&context),
+ "Module verification error");
+ return nullptr;
+ }
+
+ return std::move(theModule);
+ }
+
+private:
+ /// In MLIR (like in LLVM) a "context" object holds the memory allocation and
+ /// the ownership of many internal structure of the IR and provide a level
+ /// of "uniquing" across multiple modules (types for instance).
+ mlir::MLIRContext &context;
+
+ /// A "module" matches a source file: it contains a list of functions.
+ std::unique_ptr<mlir::Module> theModule;
+
+ /// The builder is a helper class to create IR inside a function. It is
+ /// re-initialized every time we enter a function and kept around as a
+ /// convenience for emitting individual operations.
+ /// The builder is stateful, in particular it keeeps an "insertion point":
+ /// this is where the next operations will be introduced.
+ std::unique_ptr<mlir::FuncBuilder> builder;
+
+ /// The symbol table maps a variable name to a value in the current scope.
+ /// Entering a function creates a new scope, and the function arguments are
+ /// added to the mapping. When the processing of a function is terminated, the
+ /// scope is destroyed and the mappings created in this scope are dropped.
+ llvm::ScopedHashTable<StringRef, mlir::Value *> symbolTable;
+
+ /// Helper conversion for a Toy AST location to an MLIR location.
+ mlir::FileLineColLoc loc(Location loc) {
+ return mlir::FileLineColLoc::get(
+ mlir::UniquedFilename::get(*loc.file, &context), loc.line, loc.col,
+ &context);
+ }
+
+ /// Declare a variable in the current scope, return true if the variable
+ /// wasn't declared yet.
+ bool declare(llvm::StringRef var, mlir::Value *value) {
+ if (symbolTable.count(var)) {
+ return false;
+ }
+ symbolTable.insert(var, value);
+ return true;
+ }
+
+ /// Create the prototype for an MLIR function with as many arguments as the
+ /// provided Toy AST prototype.
+ mlir::Function *mlirGen(PrototypeAST &proto) {
+ // This is a generic function, the return type will be inferred later.
+ llvm::SmallVector<mlir::Type, 4> ret_types;
+ // Arguments type is uniformly a generic array.
+ llvm::SmallVector<mlir::Type, 4> arg_types(proto.getArgs().size(),
+ getType(VarType{}));
+ auto func_type = mlir::FunctionType::get(arg_types, ret_types, &context);
+ auto *function = new mlir::Function(loc(proto.loc()), proto.getName(),
+ func_type, /* attrs = */ {});
+
+ // Mark the function as generic: it'll require type specialization for every
+ // call site.
+ if (function->getNumArguments())
+ function->setAttr("toy.generic", mlir::BoolAttr::get(true, &context));
+
+ return function;
+ }
+
+ /// Emit a new function and add it to the MLIR module.
+ std::unique_ptr<mlir::Function> mlirGen(FunctionAST &funcAST) {
+ // Create a scope in the symbol table to hold variable declarations.
+ ScopedHashTableScope<llvm::StringRef, mlir::Value *> var_scope(symbolTable);
+
+ // Create an MLIR function for the given prototype.
+ std::unique_ptr<mlir::Function> function(mlirGen(*funcAST.getProto()));
+ if (!function)
+ return nullptr;
+
+ // Let's start the body of the function now!
+ // In MLIR the entry block of the function is special: it must have the same
+ // argument list as the function itself.
+ function->addEntryBlock();
+
+ auto &entryBlock = function->front();
+ auto &protoArgs = funcAST.getProto()->getArgs();
+ // Declare all the function arguments in the symbol table.
+ for (const auto &name_value :
+ llvm::zip(protoArgs, entryBlock.getArguments())) {
+ declare(std::get<0>(name_value)->getName(), std::get<1>(name_value));
+ }
+
+ // Create a builder for the function, it will be used throughout the codegen
+ // to create operations in this function.
+ builder = llvm::make_unique<mlir::FuncBuilder>(function.get());
+
+ // Emit the body of the function.
+ if (!mlirGen(*funcAST.getBody()))
+ return nullptr;
+
+ // Implicitly return void if no return statement was emited.
+ // FIXME: we may fix the parser instead to always return the last expression
+ // (this would possibly help the REPL case later)
+ if (function->getBlocks().back().back().getName().getStringRef() !=
+ "toy.return") {
+ ReturnExprAST fakeRet(funcAST.getProto()->loc(), llvm::None);
+ mlirGen(fakeRet);
+ }
+
+ return function;
+ }
+
+ /// Emit a binary operation
+ mlir::Value *mlirGen(BinaryExprAST &binop) {
+ // First emit the operations for each side of the operation before emitting
+ // the operation itself. For example if the expression is `a + foo(a)`
+ // 1) First it will visiting the LHS, which will return a reference to the
+ // value holding `a`. This value should have been emitted at declaration
+ // time and registered in the symbol table, so nothing would be
+ // codegen'd. If the value is not in the symbol table, an error has been
+ // emitted and nullptr is returned.
+ // 2) Then the RHS is visited (recursively) and a call to `foo` is emitted
+ // and the result value is returned. If an error occurs we get a nullptr
+ // and propagate.
+ //
+ mlir::Value *L = mlirGen(*binop.getLHS());
+ if (!L)
+ return nullptr;
+ mlir::Value *R = mlirGen(*binop.getRHS());
+ if (!R)
+ return nullptr;
+ auto location = loc(binop.loc());
+
+ // Derive the operation name from the binary operator. At the moment we only
+ // support '+' and '*'.
+ switch (binop.getOp()) {
+ case '+':
+ return builder->create<AddOp>(location, L, R).getResult();
+ break;
+ case '*':
+ return builder->create<MulOp>(location, L, R).getResult();
+ default:
+ context.emitError(loc(binop.loc()),
+ Twine("Error: invalid binary operator '") +
+ Twine(binop.getOp()) + "'");
+ return nullptr;
+ }
+ }
+
+ // This is a reference to a variable in an expression. The variable is
+ // expected to have been declared and so should have a value in the symbol
+ // table, otherwise emit an error and return nullptr.
+ mlir::Value *mlirGen(VariableExprAST &expr) {
+ if (symbolTable.count(expr.getName()))
+ return symbolTable.lookup(expr.getName());
+ context.emitError(loc(expr.loc()), Twine("Error: unknown variable '") +
+ expr.getName() + "'");
+ return nullptr;
+ }
+
+ // Emit a return operation, return true on success.
+ bool mlirGen(ReturnExprAST &ret) {
+ auto location = loc(ret.loc());
+ // `return` takes an optional expression, we need to account for it here.
+ if (!ret.getExpr().hasValue()) {
+ builder->create<ReturnOp>(location);
+ return true;
+ }
+ auto *expr = mlirGen(*ret.getExpr().getValue());
+ if (!expr)
+ return false;
+ builder->create<ReturnOp>(location, expr);
+ return true;
+ }
+
+ // Emit a literal/constant array. It will be emitted as a flattened array of
+ // data in an Attribute attached to a `toy.constant` operation.
+ // See documentation on [Attributes](LangRef.md#attributes) for more details.
+ // Here is an excerpt:
+ //
+ // Attributes are the mechanism for specifying constant data in MLIR in
+ // places where a variable is never allowed [...]. They consist of a name
+ // and a [concrete attribute value](#attribute-values). It is possible to
+ // attach attributes to operations, functions, and function arguments. The
+ // set of expected attributes, their structure, and their interpretation
+ // are all contextually dependent on what they are attached to.
+ //
+ // Example, the source level statement:
+ // var a<2, 3> = [[1, 2, 3], [4, 5, 6]];
+ // will be converted to:
+ // %0 = "toy.constant"() {value: dense<tensor<2x3xf64>,
+ // [[1.000000e+00, 2.000000e+00, 3.000000e+00],
+ // [4.000000e+00, 5.000000e+00, 6.000000e+00]]>} : () -> memref<2x3xf64>
+ //
+ mlir::Value *mlirGen(LiteralExprAST &lit) {
+ auto location = loc(lit.loc());
+ // The attribute is a vector with an attribute per element (number) in the
+ // array, see `collectData()` below for more details.
+ std::vector<mlir::Attribute> data;
+ data.reserve(std::accumulate(lit.getDims().begin(), lit.getDims().end(), 1,
+ std::multiplies<int>()));
+ collectData(lit, data);
+
+ // FIXME: using a tensor type is a HACK here.
+ // Can we do differently without registering a dialect? Using a string blob?
+ mlir::Type elementType = mlir::FloatType::getF64(&context);
+ auto dataType = builder->getTensorType(lit.getDims(), elementType);
+
+ // This is the actual attribute that actually hold the list of values for
+ // this array literal.
+ auto dataAttribute = builder->getDenseElementsAttr(dataType, data)
+ .cast<mlir::DenseElementsAttr>();
+
+ // Build the MLIR op `toy.constant`, only boilerplate below.
+ return builder->create<ConstantOp>(location, lit.getDims(), dataAttribute)
+ .getResult();
+ }
+
+ // Recursive helper function to accumulate the data that compose an array
+ // literal. It flattens the nested structure in the supplied vector. For
+ // example with this array:
+ // [[1, 2], [3, 4]]
+ // we will generate:
+ // [ 1, 2, 3, 4 ]
+ // Individual numbers are wrapped in a light wrapper `mlir::FloatAttr`.
+ // Attributes are the way MLIR attaches constant to operations and functions.
+ void collectData(ExprAST &expr, std::vector<mlir::Attribute> &data) {
+ if (auto *lit = dyn_cast<LiteralExprAST>(&expr)) {
+ for (auto &value : lit->getValues())
+ collectData(*value, data);
+ return;
+ }
+ assert(isa<NumberExprAST>(expr) && "expected literal or number expr");
+ mlir::Type elementType = mlir::FloatType::getF64(&context);
+ auto attr = mlir::FloatAttr::getChecked(
+ elementType, cast<NumberExprAST>(expr).getValue(), loc(expr.loc()));
+ data.push_back(attr);
+ }
+
+ // Emit a call expression. It emits specific operations for the `transpose`
+ // builtin. Other identifiers are assumed to be user-defined functions.
+ mlir::Value *mlirGen(CallExprAST &call) {
+ auto location = loc(call.loc());
+ std::string callee = call.getCallee();
+ if (callee == "transpose") {
+ if (call.getArgs().size() != 1) {
+ context.emitError(
+ location, Twine("MLIR codegen encountered an error: toy.transpose "
+ "does not accept multiple arguments"));
+ return nullptr;
+ }
+ mlir::Value *arg = mlirGen(*call.getArgs()[0]);
+ return builder->create<TransposeOp>(location, arg).getResult();
+ }
+
+ // Codegen the operands first
+ SmallVector<mlir::Value *, 4> operands;
+ for (auto &expr : call.getArgs()) {
+ auto *arg = mlirGen(*expr);
+ if (!arg)
+ return nullptr;
+ operands.push_back(arg);
+ }
+ // Calls to user-defined function are mapped to a custom call that takes
+ // the callee name as an attribute.
+ return builder->create<GenericCallOp>(location, call.getCallee(), operands)
+ .getResult();
+ }
+
+ // Emit a call expression. It emits specific operations for two builtins:
+ // transpose(x) and print(x). Other identifiers are assumed to be user-defined
+ // functions. Return false on failure.
+ bool mlirGen(PrintExprAST &call) {
+ auto *arg = mlirGen(*call.getArg());
+ if (!arg)
+ return false;
+ auto location = loc(call.loc());
+ builder->create<PrintOp>(location, arg);
+ return true;
+ }
+
+ // Emit a constant for a single number (FIXME: semantic? broadcast?)
+ mlir::Value *mlirGen(NumberExprAST &num) {
+ auto location = loc(num.loc());
+ mlir::Type elementType = mlir::FloatType::getF64(&context);
+ auto attr = mlir::FloatAttr::getChecked(elementType, num.getValue(),
+ loc(num.loc()));
+ return builder->create<ConstantOp>(location, attr).getResult();
+ }
+
+ // Dispatch codegen for the right expression subclass using RTTI.
+ mlir::Value *mlirGen(ExprAST &expr) {
+ switch (expr.getKind()) {
+ case toy::ExprAST::Expr_BinOp:
+ return mlirGen(cast<BinaryExprAST>(expr));
+ case toy::ExprAST::Expr_Var:
+ return mlirGen(cast<VariableExprAST>(expr));
+ case toy::ExprAST::Expr_Literal:
+ return mlirGen(cast<LiteralExprAST>(expr));
+ case toy::ExprAST::Expr_Call:
+ return mlirGen(cast<CallExprAST>(expr));
+ case toy::ExprAST::Expr_Num:
+ return mlirGen(cast<NumberExprAST>(expr));
+ default:
+ context.emitError(
+ loc(expr.loc()),
+ Twine("MLIR codegen encountered an unhandled expr kind '") +
+ Twine(expr.getKind()) + "'");
+ return nullptr;
+ }
+ }
+
+ // Handle a variable declaration, we'll codegen the expression that forms the
+ // initializer and record the value in the symbol table before returning it.
+ // Future expressions will be able to reference this variable through symbol
+ // table lookup.
+ mlir::Value *mlirGen(VarDeclExprAST &vardecl) {
+ mlir::Value *value = nullptr;
+ auto location = loc(vardecl.loc());
+ if (auto init = vardecl.getInitVal()) {
+ value = mlirGen(*init);
+ if (!value)
+ return nullptr;
+ // We have the initializer value, but in case the variable was declared
+ // with specific shape, we emit a "reshape" operation. It will get
+ // optimized out later as needed.
+ if (!vardecl.getType().shape.empty()) {
+ value = builder
+ ->create<ReshapeOp>(
+ location, value,
+ getType(vardecl.getType()).cast<ToyArrayType>())
+ .getResult();
+ }
+ } else {
+ context.emitError(loc(vardecl.loc()),
+ "Missing initializer in variable declaration");
+ return nullptr;
+ }
+ // Register the value in the symbol table
+ declare(vardecl.getName(), value);
+ return value;
+ }
+
+ /// Codegen a list of expression, return false if one of them hit an error.
+ bool mlirGen(ExprASTList &blockAST) {
+ ScopedHashTableScope<llvm::StringRef, mlir::Value *> var_scope(symbolTable);
+ for (auto &expr : blockAST) {
+ // Specific handling for variable declarations, return statement, and
+ // print. These can only appear in block list and not in nested
+ // expressions.
+ if (auto *vardecl = dyn_cast<VarDeclExprAST>(expr.get())) {
+ if (!mlirGen(*vardecl))
+ return false;
+ continue;
+ }
+ if (auto *ret = dyn_cast<ReturnExprAST>(expr.get())) {
+ if (!mlirGen(*ret))
+ return false;
+ return true;
+ }
+ if (auto *print = dyn_cast<PrintExprAST>(expr.get())) {
+ if (!mlirGen(*print))
+ return false;
+ continue;
+ }
+ // Generic expression dispatch codegen.
+ if (!mlirGen(*expr))
+ return false;
+ }
+ return true;
+ }
+
+ /// Build a type from a list of shape dimensions. Types are `array` followed
+ /// by an optional dimension list, example: array<2, 2>
+ /// They are wrapped in a `toy` dialect (see next chapter) and get printed:
+ /// !toy.array<2, 2>
+ template <typename T> mlir::Type getType(T shape) {
+ SmallVector<int64_t, 8> shape64(shape.begin(), shape.end());
+ return ToyArrayType::get(&context, shape64);
+ }
+
+ /// Build an MLIR type from a Toy AST variable type
+ /// (forward to the generic getType(T) above).
+ mlir::Type getType(const VarType &type) { return getType(type.shape); }
+};
+
+} // namespace
+
+namespace toy {
+
+// The public API for codegen.
+std::unique_ptr<mlir::Module> mlirGen(mlir::MLIRContext &context,
+ ModuleAST &moduleAST) {
+ return MLIRGenImpl(context).mlirGen(moduleAST);
+}
+
+} // namespace toy
diff --git a/mlir/ShapeInferencePass.cpp b/mlir/ShapeInferencePass.cpp
new file mode 100644
index 0000000..7e3ea3f
--- /dev/null
+++ b/mlir/ShapeInferencePass.cpp
@@ -0,0 +1,387 @@
+//===- ShapeInferencePass.cpp - Toy Shape Inference / Func Specialization -===//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+//
+// This file implements a Module level pass performing interprocedural
+// propagation of array shapes through function specialization.
+//
+//===----------------------------------------------------------------------===//
+
+#include "toy/Dialect.h"
+
+#include "mlir/IR/BlockAndValueMapping.h"
+#include "mlir/IR/Builders.h"
+#include "mlir/IR/StandardTypes.h"
+#include "mlir/Pass/Pass.h"
+#include "mlir/StandardOps/Ops.h"
+#include "mlir/Support/LogicalResult.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+#define DEBUG_TYPE "toy-shape-inference"
+
+using namespace toy;
+using llvm::MutableArrayRef;
+using llvm::SmallVector;
+using llvm::SmallVectorImpl;
+using llvm::StringRef;
+using llvm::Twine;
+
+/// Create mangled name for function specialization. We will simply append the
+/// shape of the arguments to the function name. For example calling
+///
+/// "toy.generic_call"(%1, %3) {callee: "foo"}
+/// : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array">
+///
+/// would be mangled foo_2x3_2x3. This mangling isn't robust as the user could
+/// have provide a function with a similar name. But we will claim this as a
+/// feature: this allow the user to provide custom specialization!
+static std::string mangle(StringRef funcName,
+ MutableArrayRef<mlir::OpOperand> operands) {
+ std::string mangledName;
+ mangledName.reserve(funcName.size() + operands.size() * 6);
+ mangledName = funcName;
+ for (auto &operand : operands) {
+ auto arrayTy = operand.get()->getType().cast<ToyArrayType>();
+ mangledName += "_";
+ const char *sep = "";
+ for (auto dim : arrayTy.getShape()) {
+ mangledName += (sep + Twine(dim)).str();
+ sep = "x";
+ }
+ }
+ return mangledName;
+}
+
+namespace {
+
+/// The ShapeInferencePass is a ModulePass: it will run on the Module as a
+/// whole. MLIR also supports FunctionPass which are restricted to modify a
+/// single function at a time. This pass couldn't be a function pass due the
+/// nature of its interprocedural transformations.
+///
+/// The algorithm has two levels, first intra-procedurally:
+///
+/// 1) Build a worklist containing all the operations that are returning
+/// a generic Toy array: these are the operations that need shape
+/// inference.
+/// 2) Iterate on the worklist:
+/// a) find an operation to process: the next ready operation in the
+/// worklist has all of its arguments non-generic,
+/// b) if no operation is found, break out of the loop,
+/// c) remove the operation from the worklist,
+/// d) infer the shape of its output from the arguments type.
+/// 3) If the worklist is empty, the algorithm succeeded and we infer the
+/// return type for the function from the return operation.
+///
+/// There is a twist though: when a call to a generic function is encountered,
+/// shape inference requires the return type of the callee to be inferred first.
+/// At this point we need to run specialize the callee by cloning it. Here is
+/// the inter-procedural flow:
+///
+/// 1) Keep a worklist of function to process. Start with function "main".
+/// 2) While the worklist isn't empty:
+/// a) Take the last inserted function in the worklist.
+/// b) Run the intra-procedural shape inference on this function.
+/// c) If the intra-procedural shape inference can't complete, it returns
+/// a Function that needs to be inferred first. In this case, queue this
+/// new function and continue. Otherwise the inference succeeded and we
+/// can pop from the queue.
+///
+class ShapeInferencePass : public mlir::ModulePass<ShapeInferencePass> {
+public:
+ // One entry in the inter-procedural worklist. It keeps track of the
+ // function to process, the mangled name for this specialization, and the
+ // types of the arguments on which to specialize.
+ struct FunctionToSpecialize {
+ mlir::Function *function;
+ std::string mangledName;
+ std::vector<mlir::Type> argumentsType;
+ };
+
+ void runOnModule() override {
+ auto &module = getModule();
+ auto *main = module.getNamedFunction("main");
+ if (!main) {
+ module.getContext()->emitError(
+ mlir::UnknownLoc::get(module.getContext()),
+ "Shape inference failed: can't find a main function\n");
+ signalPassFailure();
+ return;
+ }
+
+ /// Inter-procedural loop, initialize with `main` and iterate till
+ /// successfully infer the full reachable call-graph from main.
+ SmallVector<FunctionToSpecialize, 8> worklist;
+ worklist.push_back({main, "", {}});
+ while (!worklist.empty()) {
+ if (failed(specialize(worklist)))
+ return;
+ }
+
+ // Delete any generic function left
+ // FIXME: we may want this as a separate pass.
+ for (mlir::Function &function : llvm::make_early_inc_range(module)) {
+ if (auto genericAttr =
+ function.getAttrOfType<mlir::BoolAttr>("toy.generic")) {
+ if (genericAttr.getValue())
+ function.erase();
+ }
+ }
+ }
+
+ /// Run inference on a function. If a mangledName is provided, we need to
+ /// specialize the function: to this end clone it first.
+ mlir::LogicalResult
+ specialize(SmallVectorImpl<FunctionToSpecialize> &funcWorklist) {
+ FunctionToSpecialize &functionToSpecialize = funcWorklist.back();
+ mlir::Function *f = functionToSpecialize.function;
+
+ // Check if cloning for specialization is needed (usually anything but main)
+ // We will create a new function with the concrete types for the parameters
+ // and clone the body into it.
+ if (!functionToSpecialize.mangledName.empty()) {
+ if (getModule().getNamedFunction(functionToSpecialize.mangledName)) {
+ funcWorklist.pop_back();
+ // Function already specialized, move on.
+ return mlir::success();
+ }
+ // Create a new function with a generic array return type, it will be
+ // updated when the inference for the function body completes.
+ auto type = mlir::FunctionType::get(functionToSpecialize.argumentsType,
+ {ToyArrayType::get(&getContext())},
+ &getContext());
+ auto *newFunction = new mlir::Function(
+ f->getLoc(), functionToSpecialize.mangledName, type, f->getAttrs());
+ getModule().getFunctions().push_back(newFunction);
+
+ // Clone the function body
+ mlir::BlockAndValueMapping mapper;
+ f->cloneInto(newFunction, mapper);
+ LLVM_DEBUG({
+ llvm::dbgs() << "====== Cloned : \n";
+ f->dump();
+ llvm::dbgs() << "====== Into : \n";
+ newFunction->dump();
+ });
+ f = newFunction;
+ f->setAttr("toy.generic", mlir::BoolAttr::get(false, &getContext()));
+ // Remap the entry-block arguments
+ // FIXME: this seems like a bug in `cloneInto()` above?
+ auto &entryBlock = f->getBlocks().front();
+ int blockArgSize = entryBlock.getArguments().size();
+ assert(blockArgSize == f->getType().getInputs().size());
+ entryBlock.addArguments(f->getType().getInputs());
+ auto argList = entryBlock.getArguments();
+ for (int argNum = 0; argNum < blockArgSize; ++argNum) {
+ argList[0]->replaceAllUsesWith(argList[blockArgSize]);
+ entryBlock.eraseArgument(0);
+ }
+ assert(succeeded(f->verify()));
+ }
+ LLVM_DEBUG(llvm::dbgs()
+ << "Run shape inference on : '" << f->getName() << "'\n");
+
+ auto *toyDialect = getContext().getRegisteredDialect("toy");
+ if (!toyDialect) {
+ getContext().emitError(mlir::UnknownLoc::get(&getContext()),
+ "Toy dialect is not registered");
+ signalPassFailure();
+ return mlir::failure();
+ }
+
+ // Populate the worklist with the operations that need shape inference:
+ // these are the Toy operations that return a generic array.
+ llvm::SmallPtrSet<mlir::Operation *, 16> opWorklist;
+ f->walk([&](mlir::Operation *op) {
+ if (op->getDialect() == toyDialect) {
+ if (op->getNumResults() == 1 &&
+ op->getResult(0)->getType().cast<ToyArrayType>().isGeneric())
+ opWorklist.insert(op);
+ }
+ });
+
+ // Iterate on the operations in the worklist until all operations have been
+ // inferred or no change happened (fix point).
+ while (!opWorklist.empty()) {
+ // Find the next operation ready for inference, that is an operation
+ // with all operands already resolved (non-generic).
+ auto nextop = llvm::find_if(opWorklist, [](mlir::Operation *op) {
+ return llvm::all_of(op->getOperands(), [](mlir::Value *v) {
+ return !v->getType().cast<ToyArrayType>().isGeneric();
+ });
+ });
+ if (nextop == opWorklist.end())
+ break; // failure: no operations can be inferred.
+
+ mlir::Operation *op = *nextop;
+ opWorklist.erase(op);
+ LLVM_DEBUG(llvm::dbgs() << "Inferring shape for: " << *op << "\n");
+
+ // The add operation is trivial: propagate the input type as is.
+ if (auto addOp = op->dyn_cast<AddOp>()) {
+ op->getResult(0)->setType(op->getOperand(0)->getType());
+ continue;
+ }
+
+ // Transpose is easy: just invert the dimensions.
+ if (op->getName().getStringRef() == "toy.transpose") {
+ SmallVector<int64_t, 2> dims;
+ auto arrayTy = op->getOperand(0)->getType().cast<ToyArrayType>();
+ dims.insert(dims.end(), arrayTy.getShape().begin(),
+ arrayTy.getShape().end());
+ if (dims.size() == 2)
+ std::swap(dims[0], dims[1]);
+ op->getResult(0)->setType(ToyArrayType::get(&getContext(), dims));
+ continue;
+ }
+
+ // Multiplication is a bit trickier, handle rank 1 as dot product and rank
+ // 2 as matrix multiplications.
+ // We need to be careful about rank mismatch here: the verifier could
+ // catch it but shape inference earlier in the pass could generate an
+ // invalid IR (from an invalid Toy input of course) and we wouldn't want
+ // to crash here.
+ if (auto mulOp = op->dyn_cast<MulOp>()) {
+ auto lhs = mulOp.getLHS()->getType().cast<ToyArrayType>();
+ auto rhs = mulOp.getRHS()->getType().cast<ToyArrayType>();
+ auto lhsRank = lhs.getShape().size();
+ auto rhsRank = rhs.getShape().size();
+ if (lhsRank != rhsRank) {
+ op->emitError("Shape mismatch: LHS and RHS must have the same "
+ "rank for multiplication, got " +
+ Twine(lhsRank) + " vs " + Twine(lhsRank));
+ return mlir::failure();
+ }
+ SmallVector<int64_t, 2> dims;
+ if (lhsRank == 1) {
+ // dot product, result shape is <1>
+ dims.push_back(1);
+ } else {
+ if (lhsRank != 2) {
+ op->emitError(
+ "Shape mismatch: expect rank 1 or 2 for mul operands, got " +
+ Twine(lhsRank));
+ return mlir::failure();
+ }
+ dims.push_back(lhs.getShape()[0]);
+ dims.push_back(rhs.getShape()[1]);
+ }
+ op->getResult(0)->setType(ToyArrayType::get(&getContext(), dims));
+ continue;
+ }
+
+ // Process calls: lookup the callee after mangling the name with the
+ // argument shapes. If the callee does not exist, we stop the inference
+ // for this function, queue the callee in the inter-procedural work list,
+ // and return. The current function stays in the work list and will
+ // restart after the callee is processed.
+ if (auto callOp = op->dyn_cast<GenericCallOp>()) {
+ auto calleeName = callOp.getCalleeName();
+ auto *callee = getModule().getNamedFunction(calleeName);
+ if (!callee) {
+ f->emitError(
+ llvm::Twine("Shape inference failed, call to unknown '") +
+ calleeName + "'");
+ signalPassFailure();
+ return mlir::failure();
+ }
+ auto mangledName = mangle(calleeName, op->getOpOperands());
+ LLVM_DEBUG(llvm::dbgs() << "Found callee to infer: '" << calleeName
+ << "', mangled: '" << mangledName << "'\n");
+ auto *mangledCallee = getModule().getNamedFunction(mangledName);
+ if (!mangledCallee) {
+ // Can't find the target, this is where we queue the request for the
+ // callee and stop the inference for the current function now.
+ std::vector<mlir::Type> funcArgs;
+ for (auto operand : op->getOperands())
+ funcArgs.push_back(operand->getType());
+ funcWorklist.push_back(
+ {callee, std::move(mangledName), std::move(funcArgs)});
+ return mlir::success();
+ }
+ // Found a specialized callee! Let's turn this into a normal call
+ // operation.
+ SmallVector<mlir::Value *, 8> operands;
+ for (mlir::Value *v : op->getOperands())
+ operands.push_back(v);
+ mlir::FuncBuilder builder(f);
+ builder.setInsertionPoint(op);
+ auto newCall =
+ builder.create<mlir::CallOp>(op->getLoc(), mangledCallee, operands);
+ if (newCall.getNumResults()) {
+ op->getResult(0)->replaceAllUsesWith(newCall.getResult(0));
+ op->erase();
+ continue;
+ }
+ }
+ }
+
+ // Done with inference on this function, removing it from the worklist.
+ funcWorklist.pop_back();
+ // Mark the function as non-generic now that inference has succeeded
+ f->setAttr("toy.generic", mlir::BoolAttr::get(false, &getContext()));
+
+ // If the operation worklist isn't empty, this indicates a failure.
+ if (!opWorklist.empty()) {
+ std::string str;
+ llvm::raw_string_ostream errorMsg(str);
+ errorMsg << "Shape inference failed, " << opWorklist.size()
+ << " operations couldn't be inferred\n";
+ for (auto *ope : opWorklist)
+ errorMsg << " - " << *ope << "\n";
+ f->emitError(errorMsg.str());
+ signalPassFailure();
+ return mlir::failure();
+ }
+
+ // Finally, update the return type of the function based on the argument to
+ // the return operation.
+ for (auto &block : f->getBlocks()) {
+ auto ret = block.getTerminator()->cast<ReturnOp>();
+ if (!ret)
+ continue;
+ if (ret.getNumOperands() &&
+ f->getType().getResult(0) == ret.getOperand()->getType())
+ // type match, we're done
+ break;
+ SmallVector<mlir::Type, 1> retTy;
+ if (ret.getNumOperands())
+ retTy.push_back(ret.getOperand()->getType());
+ mlir::Type elementType = mlir::FloatType::getF64(&getContext());
+ std::vector<mlir::Type> argumentsType;
+ for (auto arg : f->getArguments())
+ argumentsType.push_back(arg->getType());
+ auto newType =
+ mlir::FunctionType::get(argumentsType, retTy, &getContext());
+ f->setType(newType);
+ assert(succeeded(f->verify()));
+ break;
+ }
+ return mlir::success();
+ }
+};
+} // end anonymous namespace
+
+namespace toy {
+mlir::Pass *createShapeInferencePass() { return new ShapeInferencePass(); }
+} // namespace toy
diff --git a/mlir/ToyCombine.cpp b/mlir/ToyCombine.cpp
new file mode 100644
index 0000000..8d6aed6
--- /dev/null
+++ b/mlir/ToyCombine.cpp
@@ -0,0 +1,209 @@
+//===- ToyCombine.cpp - Toy High Level Optimizer --------------------------===//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+//
+// This file implements a simple combiner for optimizing pattern in the Toy
+// dialect.
+//
+//===----------------------------------------------------------------------===//
+
+#include "toy/Dialect.h"
+
+#include "mlir/IR/Operation.h"
+#include "mlir/IR/PatternMatch.h"
+#include "mlir/IR/StandardTypes.h"
+
+#include <numeric>
+
+namespace toy {
+
+namespace {
+
+/// Fold transpose(transpose(x)) -> transpose(x)
+struct SimplifyRedundantTranspose : public mlir::RewritePattern {
+ /// We register this pattern to match every toy.transpose in the IR.
+ /// The "benefit" is used by the framework to order the patterns and process
+ /// them in order of profitability.
+ SimplifyRedundantTranspose(mlir::MLIRContext *context)
+ : RewritePattern(TransposeOp::getOperationName(), /* benefit = */ 1,
+ context) {}
+
+ /// This method is attempting to match a pattern and rewrite it. The rewriter
+ /// argument is the orchestrator of the sequence of rewrites. It is expected
+ /// to interact with it to perform any changes to the IR from here.
+ mlir::PatternMatchResult
+ matchAndRewrite(mlir::Operation *op,
+ mlir::PatternRewriter &rewriter) const override {
+ // We can directly cast the current operation as this will only get invoked
+ // on TransposeOp.
+ TransposeOp transpose = op->cast<TransposeOp>();
+ // look through the input to the current transpose
+ mlir::Value *transposeInput = transpose.getOperand();
+ mlir::Operation *transposeInputInst = transposeInput->getDefiningOp();
+ // If the input is defined by another Transpose, bingo!
+ TransposeOp transposeInputOp =
+ mlir::dyn_cast_or_null<TransposeOp>(transposeInputInst);
+ if (!transposeInputOp)
+ return matchFailure();
+
+ // Use the rewriter to perform the replacement
+ rewriter.replaceOp(op, {transposeInputOp.getOperand()}, {transposeInputOp});
+ return matchSuccess();
+ }
+};
+
+/// Fold reshape(constant(x)) -> constant(x'), with x' being reshaped in place.
+struct SimplifyReshapeConstant : public mlir::RewritePattern {
+ SimplifyReshapeConstant(mlir::MLIRContext *context)
+ : RewritePattern(ReshapeOp::getOperationName(), /* benefit = */ 1,
+ context) {}
+
+ mlir::PatternMatchResult
+ matchAndRewrite(mlir::Operation *op,
+ mlir::PatternRewriter &rewriter) const override {
+ ReshapeOp reshape = op->cast<ReshapeOp>();
+ // look through the input to the current reshape
+ mlir::Value *reshapeInput = reshape.getOperand();
+ mlir::Operation *reshapeInputInst = reshapeInput->getDefiningOp();
+ // If the input is defined by another reshape, bingo!
+ ConstantOp constantOp =
+ mlir::dyn_cast_or_null<ConstantOp>(reshapeInputInst);
+ if (!constantOp)
+ return matchFailure();
+
+ auto reshapeType = op->getResult(0)->getType().cast<ToyArrayType>();
+ if (auto valueAttr =
+ constantOp.getAttrOfType<mlir::DenseElementsAttr>("value")) {
+ // FIXME Check matching of element count!
+ // auto oldType = constantOp.getType();
+ auto newType = rewriter.getTensorType(
+ reshapeType.getShape(), valueAttr.getType().getElementType());
+ auto newAttr =
+ mlir::DenseElementsAttr::get(newType, valueAttr.getRawData());
+ auto newConstant = rewriter.create<ConstantOp>(
+ constantOp.getLoc(), reshapeType.getShape(), newAttr);
+ rewriter.replaceOp(op, {newConstant});
+ } else if (auto valueAttr =
+ constantOp.getAttrOfType<mlir::FloatAttr>("value")) {
+ // Broadcast
+ auto dataSize = std::accumulate(reshapeType.getShape().begin(),
+ reshapeType.getShape().end(), 1,
+ std::multiplies<int>());
+ std::vector<mlir::Attribute> data(dataSize, valueAttr);
+ auto tensorTy = rewriter.getTensorType(reshapeType.getShape(),
+ reshapeType.getElementType());
+ auto newAttr = mlir::DenseElementsAttr::get(tensorTy, data);
+ auto newConstant = rewriter.create<ConstantOp>(
+ constantOp.getLoc(), reshapeType.getShape(), newAttr);
+ rewriter.replaceOp(op, {newConstant});
+ } else {
+ llvm_unreachable("Unsupported Constant format");
+ }
+ return matchSuccess();
+ }
+};
+
+/// Fold reshape(reshape(x)) -> reshape(x)
+struct SimplifyReshapeReshape : public mlir::RewritePattern {
+ SimplifyReshapeReshape(mlir::MLIRContext *context)
+ : RewritePattern(ReshapeOp::getOperationName(), /* benefit = */ 1,
+ context) {}
+
+ mlir::PatternMatchResult
+ matchAndRewrite(mlir::Operation *op,
+ mlir::PatternRewriter &rewriter) const override {
+ ReshapeOp reshape = op->cast<ReshapeOp>();
+ // look through the input to the current reshape
+ mlir::Value *reshapeInput = reshape.getOperand();
+ mlir::Operation *reshapeInputInst = reshapeInput->getDefiningOp();
+ // If the input is defined by another reshape, bingo!
+ ReshapeOp reshapeInputOp =
+ mlir::dyn_cast_or_null<ReshapeOp>(reshapeInputInst);
+ if (!reshapeInputOp)
+ return matchFailure();
+
+ // Use the rewriter to perform the replacement
+ rewriter.replaceOp(op, {reshapeInputOp});
+ return matchSuccess();
+ }
+};
+
+/// Fold reshape(x)) -> x, when input type matches output type
+struct SimplifyNullReshape : public mlir::RewritePattern {
+ SimplifyNullReshape(mlir::MLIRContext *context)
+ : RewritePattern(ReshapeOp::getOperationName(), /* benefit = */ 1,
+ context) {}
+
+ mlir::PatternMatchResult
+ matchAndRewrite(mlir::Operation *op,
+ mlir::PatternRewriter &rewriter) const override {
+ ReshapeOp reshape = op->cast<ReshapeOp>();
+ if (reshape.getOperand()->getType() != reshape.getResult()->getType())
+ return matchFailure();
+ rewriter.replaceOp(reshape, {reshape.getOperand()});
+ return matchSuccess();
+ }
+};
+
+} // end anonymous namespace.
+
+// Register our patterns for rewrite by the Canonicalization framework.
+void TransposeOp::getCanonicalizationPatterns(
+ mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
+ results.push_back(llvm::make_unique<SimplifyRedundantTranspose>(context));
+}
+
+// Register our patterns for rewrite by the Canonicalization framework.
+void ReshapeOp::getCanonicalizationPatterns(
+ mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
+ results.push_back(llvm::make_unique<SimplifyReshapeConstant>(context));
+ results.push_back(llvm::make_unique<SimplifyReshapeReshape>(context));
+ results.push_back(llvm::make_unique<SimplifyNullReshape>(context));
+}
+
+namespace {
+
+/// Fold type.cast(x) -> x, when input type matches output type
+struct SimplifyIdentityTypeCast : public mlir::RewritePattern {
+ SimplifyIdentityTypeCast(mlir::MLIRContext *context)
+ : RewritePattern(TypeCastOp::getOperationName(), /* benefit = */ 1,
+ context) {}
+
+ mlir::PatternMatchResult
+ matchAndRewrite(mlir::Operation *op,
+ mlir::PatternRewriter &rewriter) const override {
+ TypeCastOp typeCast = op->cast<TypeCastOp>();
+ auto resTy = typeCast.getResult()->getType();
+ auto *candidateOp = op;
+ while (candidateOp && candidateOp->isa<TypeCastOp>()) {
+ if (resTy == candidateOp->getOperand(0)->getType()) {
+ rewriter.replaceOp(typeCast, {candidateOp->getOperand(0)});
+ return matchSuccess();
+ }
+ candidateOp = candidateOp->getOperand(0)->getDefiningOp();
+ }
+ return matchFailure();
+ }
+};
+
+} // end anonymous namespace.
+
+void TypeCastOp::getCanonicalizationPatterns(
+ mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) {
+ results.push_back(llvm::make_unique<SimplifyIdentityTypeCast>(context));
+}
+
+} // namespace toy
diff --git a/mlir/ToyDialect.cpp b/mlir/ToyDialect.cpp
new file mode 100644
index 0000000..be117f5
--- /dev/null
+++ b/mlir/ToyDialect.cpp
@@ -0,0 +1,405 @@
+//===- ToyDialect.cpp - Toy IR Dialect registration in MLIR ---------------===//
+//
+// Copyright 2019 The MLIR Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+// =============================================================================
+//
+// This file implements the dialect for the Toy IR: custom type parsing and
+// operation verification.
+//
+//===----------------------------------------------------------------------===//
+
+#include "toy/Dialect.h"
+
+#include "mlir/IR/Builders.h"
+#include "mlir/IR/StandardTypes.h"
+#include "mlir/Support/STLExtras.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Regex.h"
+#include "llvm/Support/raw_ostream.h"
+
+using llvm::ArrayRef;
+using llvm::raw_ostream;
+using llvm::raw_string_ostream;
+using llvm::SmallVector;
+using llvm::StringRef;
+using llvm::Twine;
+
+namespace toy {
+namespace detail {
+
+/// This class holds the implementation of the ToyArrayType.
+/// It is intended to be uniqued based on its content and owned by the context.
+struct ToyArrayTypeStorage : public mlir::TypeStorage {
+ /// This defines how we unique this type in the context: our key contains
+ /// only the shape, a more complex type would have multiple entries in the
+ /// tuple here.
+ /// The element of the tuples usually matches 1-1 the arguments from the
+ /// public `get()` method arguments from the facade.
+ using KeyTy = std::tuple<ArrayRef<int64_t>>;
+ static unsigned hashKey(const KeyTy &key) {
+ return llvm::hash_combine(std::get<0>(key));
+ }
+ /// When the key hash hits an existing type, we compare the shape themselves
+ /// to confirm we have the right type.
+ bool operator==(const KeyTy &key) const { return key == KeyTy(getShape()); }
+
+ /// This is a factory method to create our type storage. It is only
+ /// invoked after looking up the type in the context using the key and not
+ /// finding it.
+ static ToyArrayTypeStorage *construct(mlir::TypeStorageAllocator &allocator,
+ const KeyTy &key) {
+ // Copy the shape array into the bumpptr allocator owned by the context.
+ ArrayRef<int64_t> shape = allocator.copyInto(std::get<0>(key));
+
+ // Allocate the instance for the ToyArrayTypeStorage itself
+ auto *storage = allocator.allocate<ToyArrayTypeStorage>();
+ // Initialize the instance using placement new.
+ return new (storage) ToyArrayTypeStorage(shape);
+ }
+
+ ArrayRef<int64_t> getShape() const { return shape; }
+
+private:
+ ArrayRef<int64_t> shape;
+
+ /// Constructor is only invoked from the `construct()` method above.
+ ToyArrayTypeStorage(ArrayRef<int64_t> shape) : shape(shape) {}
+};
+
+} // namespace detail
+
+mlir::Type ToyArrayType::getElementType() {
+ return mlir::FloatType::getF64(getContext());
+}
+
+ToyArrayType ToyArrayType::get(mlir::MLIRContext *context,
+ ArrayRef<int64_t> shape) {
+ return Base::get(context, ToyTypeKind::TOY_ARRAY, shape);
+}
+
+ArrayRef<int64_t> ToyArrayType::getShape() { return getImpl()->getShape(); }
+
+mlir::MemRefType ToyArrayType::toMemref() {
+ auto memRefType = mlir::MemRefType::get(getShape(), getElementType(), {}, 0);
+ return memRefType;
+}
+
+/// Dialect creation, the instance will be owned by the context. This is the
+/// point of registration of custom types and operations for the dialect.
+ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) {
+ addOperations<ConstantOp, GenericCallOp, PrintOp, TransposeOp, ReshapeOp,
+ MulOp, AddOp, ReturnOp, AllocOp, TypeCastOp>();
+ addTypes<ToyArrayType>();
+}
+
+/// Parse a type registered to this dialect, we expect only Toy arrays.
+mlir::Type ToyDialect::parseType(StringRef tyData, mlir::Location loc) const {
+ // Sanity check: we only support array or array<...>
+ if (!tyData.startswith("array")) {
+ getContext()->emitError(loc, "Invalid Toy type '" + tyData +
+ "', array expected");
+ return nullptr;
+ }
+ // Drop the "array" prefix from the type name, we expect either an empty
+ // string or just the shape.
+ tyData = tyData.drop_front(StringRef("array").size());
+ // This is the generic array case without shape, early return it.
+ if (tyData.empty())
+ return ToyArrayType::get(getContext());
+
+ // Use a regex to parse the shape (for efficient we should store this regex in
+ // the dialect itself).
+ SmallVector<StringRef, 4> matches;
+ auto shapeRegex = llvm::Regex("^<([0-9]+)(, ([0-9]+))*>$");
+ if (!shapeRegex.match(tyData, &matches)) {
+ getContext()->emitError(loc, "Invalid toy array shape '" + tyData + "'");
+ return nullptr;
+ }
+ SmallVector<int64_t, 4> shape;
+ // Iterate through the captures, skip the first one which is the full string.
+ for (auto dimStr :
+ llvm::make_range(std::next(matches.begin()), matches.end())) {
+ if (dimStr.startswith(","))
+ continue; // POSIX misses non-capturing groups.
+ if (dimStr.empty())
+ continue; // '*' makes it an optional group capture
+ // Convert the capture to an integer
+ unsigned long long dim;
+ if (getAsUnsignedInteger(dimStr, /* Radix = */ 10, dim)) {
+ getContext()->emitError(
+ loc, "Couldn't parse dimension as integer, matched: " + dimStr);
+ return mlir::Type();
+ }
+ shape.push_back(dim);
+ }
+ // Finally we collected all the dimensions in the shape,
+ // create the array type.
+ return ToyArrayType::get(getContext(), shape);
+}
+
+/// Print a Toy array type, for example `array<2, 3, 4>`
+void ToyDialect::printType(mlir::Type type, raw_ostream &os) const {
+ auto arrayTy = type.dyn_cast<ToyArrayType>();
+ if (!arrayTy) {
+ os << "unknown toy type";
+ return;
+ }
+ os << "array";
+ if (!arrayTy.getShape().empty()) {
+ os << "<";
+ mlir::interleaveComma(arrayTy.getShape(), os);
+ os << ">";
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////
+//////////////////// Custom Operations for the Dialect /////////////////////////
+////////////////////////////////////////////////////////////////////////////////
+
+/// Helper to verify that the result of an operation is a Toy array type.
+template <typename T> static mlir::LogicalResult verifyToyReturnArray(T *op) {
+ if (!op->getResult()->getType().template isa<ToyArrayType>()) {
+ std::string msg;
+ raw_string_ostream os(msg);
+ os << "expects a Toy Array for its argument, got "
+ << op->getResult()->getType();
+ return op->emitOpError(os.str());
+ }
+ return mlir::success();
+}
+
+/// Helper to verify that the two operands of a binary operation are Toy
+/// arrays..
+template <typename T> static mlir::LogicalResult verifyToyBinOperands(T *op) {
+ if (!op->getOperand(0)->getType().template isa<ToyArrayType>()) {
+ std::string msg;
+ raw_string_ostream os(msg);
+ os << "expects a Toy Array for its LHS, got "
+ << op->getOperand(0)->getType();
+ return op->emitOpError(os.str());
+ }
+ if (!op->getOperand(1)->getType().template isa<ToyArrayType>()) {
+ std::string msg;
+ raw_string_ostream os(msg);
+ os << "expects a Toy Array for its LHS, got "
+ << op->getOperand(0)->getType();
+ return op->emitOpError(os.str());
+ }
+ return mlir::success();
+}
+
+/// Build a constant operation.
+/// The builder is passed as an argument, so is the state that this method is
+/// expected to fill in order to build the operation.
+void ConstantOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ ArrayRef<int64_t> shape, mlir::DenseElementsAttr value) {
+ state->types.push_back(ToyArrayType::get(builder->getContext(), shape));
+ auto dataAttribute = builder->getNamedAttr("value", value);
+ state->attributes.push_back(dataAttribute);
+}
+
+/// Build a constant operation.
+/// The builder is passed as an argument, so is the state that this method is
+/// expected to fill in order to build the operation.
+void ConstantOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::FloatAttr value) {
+ // Broadcast and forward to the other build factory
+ mlir::Type elementType = mlir::FloatType::getF64(builder->getContext());
+ auto dataType = builder->getTensorType({1}, elementType);
+ auto dataAttribute = builder->getDenseElementsAttr(dataType, {value})
+ .cast<mlir::DenseElementsAttr>();
+
+ ConstantOp::build(builder, state, {1}, dataAttribute);
+}
+
+/// Verifier for constant operation.
+mlir::LogicalResult ConstantOp::verify() {
+ // Ensure that the return type is a Toy array
+ if (failed(verifyToyReturnArray(this)))
+ return mlir::failure();
+
+ // We expect the constant itself to be stored as an attribute.
+ auto dataAttr = getAttr("value").dyn_cast<mlir::DenseElementsAttr>();
+ if (!dataAttr) {
+ return emitOpError(
+ "missing valid `value` DenseElementsAttribute on toy.constant()");
+ }
+ auto attrType = dataAttr.getType().dyn_cast<mlir::TensorType>();
+ if (!attrType) {
+ return emitOpError(
+ "missing valid `value` DenseElementsAttribute on toy.constant()");
+ }
+
+ // If the return type of the constant is not a generic array, the shape must
+ // match the shape of the attribute holding the data.
+ auto resultType = getResult()->getType().cast<ToyArrayType>();
+ if (!resultType.isGeneric()) {
+ if (attrType.getRank() != resultType.getRank()) {
+ return emitOpError("The rank of the toy.constant return type must match "
+ "the one of the attached value attribute: " +
+ Twine(attrType.getRank()) +
+ " != " + Twine(resultType.getRank()));
+ }
+ for (int dim = 0; dim < attrType.getRank(); ++dim) {
+ if (attrType.getShape()[dim] != resultType.getShape()[dim]) {
+ std::string msg;
+ raw_string_ostream os(msg);
+ return emitOpError(
+ "Shape mismatch between toy.constant return type and its "
+ "attribute at dimension " +
+ Twine(dim) + ": " + Twine(attrType.getShape()[dim]) +
+ " != " + Twine(resultType.getShape()[dim]));
+ }
+ }
+ }
+ return mlir::success();
+}
+
+void GenericCallOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ StringRef callee, ArrayRef<mlir::Value *> arguments) {
+ // Generic call always returns a generic ToyArray initially
+ state->types.push_back(ToyArrayType::get(builder->getContext()));
+ state->operands.assign(arguments.begin(), arguments.end());
+ auto calleeAttr = builder->getStringAttr(callee);
+ state->attributes.push_back(builder->getNamedAttr("callee", calleeAttr));
+}
+
+mlir::LogicalResult GenericCallOp::verify() {
+ // Verify that every operand is a Toy Array
+ for (int opId = 0, num = getNumOperands(); opId < num; ++opId) {
+ if (!getOperand(opId)->getType().template isa<ToyArrayType>()) {
+ std::string msg;
+ raw_string_ostream os(msg);
+ os << "expects a Toy Array for its " << opId << " operand, got "
+ << getOperand(opId)->getType();
+ return emitOpError(os.str());
+ }
+ }
+ return mlir::success();
+}
+
+/// Return the name of the callee.
+StringRef GenericCallOp::getCalleeName() {
+ return getAttr("callee").cast<mlir::StringAttr>().getValue();
+}
+
+template <typename T> static mlir::LogicalResult verifyToySingleOperand(T *op) {
+ if (!op->getOperand()->getType().template isa<ToyArrayType>()) {
+ std::string msg;
+ raw_string_ostream os(msg);
+ os << "expects a Toy Array for its argument, got "
+ << op->getOperand()->getType();
+ return op->emitOpError(os.str());
+ }
+ return mlir::success();
+}
+
+void ReturnOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::Value *value) {
+ // Return does not return any value and has an optional single argument
+ if (value)
+ state->operands.push_back(value);
+}
+
+mlir::LogicalResult ReturnOp::verify() {
+ if (getNumOperands() > 1)
+ return emitOpError("expects zero or one operand, got " +
+ Twine(getNumOperands()));
+ if (hasOperand() && failed(verifyToySingleOperand(this)))
+ return mlir::failure();
+ return mlir::success();
+}
+
+void PrintOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::Value *value) {
+ // Print does not return any value and has a single argument
+ state->operands.push_back(value);
+}
+
+mlir::LogicalResult PrintOp::verify() {
+ if (failed(verifyToySingleOperand(this)))
+ return mlir::failure();
+ return mlir::success();
+}
+
+void TransposeOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::Value *value) {
+ state->types.push_back(ToyArrayType::get(builder->getContext()));
+ state->operands.push_back(value);
+}
+
+mlir::LogicalResult TransposeOp::verify() {
+ if (failed(verifyToySingleOperand(this)))
+ return mlir::failure();
+ return mlir::success();
+}
+
+void ReshapeOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::Value *value, ToyArrayType reshapedType) {
+ state->types.push_back(reshapedType);
+ state->operands.push_back(value);
+}
+
+mlir::LogicalResult ReshapeOp::verify() {
+ if (failed(verifyToySingleOperand(this)))
+ return mlir::failure();
+ auto retTy = getResult()->getType().dyn_cast<ToyArrayType>();
+ if (!retTy)
+ return emitOpError("toy.reshape is expected to produce a Toy array");
+ if (retTy.isGeneric())
+ return emitOpError("toy.reshape is expected to produce a shaped Toy array, "
+ "got a generic one.");
+ return mlir::success();
+}
+
+void AddOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::Value *lhs, mlir::Value *rhs) {
+ state->types.push_back(ToyArrayType::get(builder->getContext()));
+ state->operands.push_back(lhs);
+ state->operands.push_back(rhs);
+}
+
+mlir::LogicalResult AddOp::verify() {
+ if (failed(verifyToyBinOperands(this)))
+ return mlir::failure();
+ return mlir::success();
+}
+
+void MulOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::Value *lhs, mlir::Value *rhs) {
+ state->types.push_back(ToyArrayType::get(builder->getContext()));
+ state->operands.push_back(lhs);
+ state->operands.push_back(rhs);
+}
+
+mlir::LogicalResult MulOp::verify() {
+ if (failed(verifyToyBinOperands(this)))
+ return mlir::failure();
+ return mlir::success();
+}
+
+void AllocOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::Type retType) {
+ state->types.push_back(retType);
+}
+
+void TypeCastOp::build(mlir::Builder *builder, mlir::OperationState *state,
+ mlir::Value *value, mlir::Type destTy) {
+ state->operands.push_back(value);
+ state->types.push_back(destTy);
+}
+
+} // namespace toy