diff options
Diffstat (limited to 'mlir')
-rw-r--r-- | mlir/EarlyLowering.cpp | 158 | ||||
-rw-r--r-- | mlir/LateLowering.cpp | 452 | ||||
-rw-r--r-- | mlir/MLIRGen.cpp | 480 | ||||
-rw-r--r-- | mlir/ShapeInferencePass.cpp | 387 | ||||
-rw-r--r-- | mlir/ToyCombine.cpp | 209 | ||||
-rw-r--r-- | mlir/ToyDialect.cpp | 405 |
6 files changed, 2091 insertions, 0 deletions
diff --git a/mlir/EarlyLowering.cpp b/mlir/EarlyLowering.cpp new file mode 100644 index 0000000..634c72e --- /dev/null +++ b/mlir/EarlyLowering.cpp @@ -0,0 +1,158 @@ +//=======- EarlyLowering.cpp - Toy Lowering to Linear Algebra Dialect -=======// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements early lowering of Toy IR to Linalg Dialect: we only +// lower the computationally intensive part of the program (matmul...) to a +// dialect specialized for optimizations. +// +// This is intended to showcase how multiple dialects can cohabit in the same +// function. After this lowering, you would still have toy.print in the IR for +// example. +// +//===----------------------------------------------------------------------===// + +#include "toy/Dialect.h" + +#include "linalg3/Intrinsics.h" +#include "linalg1/ViewOp.h" +#include "linalg3/TensorOps.h" +#include "mlir/EDSC/Builders.h" +#include "mlir/EDSC/Helpers.h" +#include "mlir/EDSC/Intrinsics.h" +#include "mlir/IR/Builders.h" +#include "mlir/IR/OperationSupport.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/LLVMIR/LLVMDialect.h" +#include "mlir/Parser.h" +#include "mlir/Pass/Pass.h" +#include "mlir/Transforms/DialectConversion.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Type.h" + +#include <algorithm> + +using namespace mlir; + +namespace { +/// Utility function for type casting: this is making the type checker happy, +/// while delaying the actual work involved to convert the type. Most of the +/// time both side of the cast (producer and consumer) will be lowered to a +/// dialect like LLVM and end up with the same LLVM representation, at which +/// point this becomes a no-op and is eliminated. +Value *typeCast(FuncBuilder &builder, Value *val, Type destTy) { + if (val->getType() == destTy) + return val; + return builder.create<toy::TypeCastOp>(val->getLoc(), val, destTy) + .getResult(); +} + +/// Create a type cast to turn a toy.array into a memref. The Toy Array will be +/// lowered to a memref during buffer allocation, at which point the type cast +/// becomes useless. +Value *memRefTypeCast(FuncBuilder &builder, Value *val) { + if (val->getType().isa<MemRefType>()) + return val; + auto toyArrayTy = val->getType().dyn_cast<toy::ToyArrayType>(); + if (!toyArrayTy) + return val; + return typeCast(builder, val, toyArrayTy.toMemref()); +} + +/// Lower toy.mul to Linalg `matmul`. +/// +/// This class inherit from `DialectOpConversion` and override `rewrite`, +/// similarly to the PatternRewriter introduced in the previous chapter. +/// It will be called by the DialectConversion framework (see `LateLowering` +/// class below). +class MulOpConversion : public DialectOpConversion { +public: + explicit MulOpConversion(MLIRContext *context) + : DialectOpConversion(toy::MulOp::getOperationName(), 1, context) {} + + SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, + FuncBuilder &rewriter) const override { + using namespace edsc; + using intrinsics::constant_index; + using linalg::intrinsics::range; + using linalg::intrinsics::view; + toy::MulOp mul = op->cast<toy::MulOp>(); + auto loc = mul.getLoc(); + Value *result = memRefTypeCast( + rewriter, rewriter.create<toy::AllocOp>(loc, mul.getResult()->getType()) + .getResult()); + Value *lhs = memRefTypeCast(rewriter, operands[0]); + auto memrefLHSTy = lhs->getType().cast<MemRefType>(); + Value *rhs = memRefTypeCast(rewriter, operands[1]); + auto memrefRHSTy = rhs->getType().cast<MemRefType>(); + mlir::edsc::ScopedContext scope(rewriter, loc); + edsc::ValueHandle r0 = + range(constant_index(0), constant_index(memrefLHSTy.getDimSize(0)), + constant_index(1)); + edsc::ValueHandle r1 = + range(constant_index(0), constant_index(memrefLHSTy.getDimSize(1)), + constant_index(1)); + edsc::ValueHandle r2 = + range(constant_index(0), constant_index(memrefRHSTy.getDimSize(1)), + constant_index(1)); + auto lhsView = view(lhs, {r0, r1}); + auto rhsView = view(rhs, {r1, r2}); + auto resultView = view(result, {r0, r2}); + rewriter.create<linalg::MatmulOp>(loc, lhsView, rhsView, resultView); + return {typeCast(rewriter, result, mul.getType())}; + } +}; + +// The conversion class from Toy IR Dialect to a mix of Linalg and LLVM. +class EarlyLowering : public DialectConversion { +protected: + // Initialize the list of converters. + llvm::DenseSet<DialectOpConversion *> + initConverters(MLIRContext *context) override { + return ConversionListBuilder<MulOpConversion>::build(&allocator, context); + } + +private: + llvm::BumpPtrAllocator allocator; +}; + +/// This is lowering to Linalg the parts that are computationally intensive +/// (like matmul for example...) while keeping the rest of the code in the Toy +/// dialect. +struct EarlyLoweringPass : public ModulePass<EarlyLoweringPass> { + + void runOnModule() override { + if (failed(EarlyLowering().convert(&getModule()))) { + getModule().getContext()->emitError( + mlir::UnknownLoc::get(getModule().getContext()), + "Error lowering Toy\n"); + signalPassFailure(); + } + } +}; +} // end anonymous namespace + +namespace toy { +Pass *createEarlyLoweringPass() { return new EarlyLoweringPass(); } + +std::unique_ptr<mlir::DialectConversion> makeToyEarlyLowering() { + return llvm::make_unique<EarlyLowering>(); +} + +} // namespace toy diff --git a/mlir/LateLowering.cpp b/mlir/LateLowering.cpp new file mode 100644 index 0000000..eeae6ee --- /dev/null +++ b/mlir/LateLowering.cpp @@ -0,0 +1,452 @@ +//====- LateLowering.cpp - Lowering from Toy+Linalg to LLVM -===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements late lowering of IR mixing Toy and Linalg to LLVM. +// It involves intemerdiate steps: +// - +// - a mix of affine and standard dialect. +// +//===----------------------------------------------------------------------===// + +#include "toy/Dialect.h" + +#include "linalg3/Intrinsics.h" +#include "linalg1/ViewOp.h" +#include "linalg3/ConvertToLLVMDialect.h" +#include "linalg3/TensorOps.h" +#include "linalg3/Transforms.h" +#include "mlir/EDSC/Builders.h" +#include "mlir/EDSC/Helpers.h" +#include "mlir/EDSC/Intrinsics.h" +#include "mlir/IR/Builders.h" +#include "mlir/IR/OperationSupport.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/LLVMIR/LLVMDialect.h" +#include "mlir/Parser.h" +#include "mlir/Pass/Pass.h" +#include "mlir/Transforms/DialectConversion.h" + +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Type.h" + +#include <algorithm> + +using namespace mlir; + +namespace { +/// Utility function for type casting: this is making the type checker happy, +/// while delaying the actual work involved to convert the type. Most of the +/// time both side of the cast (producer and consumer) will be lowered to a +/// dialect like LLVM and end up with the same LLVM representation, at which +/// point this becomes a no-op and is eliminated. +Value *typeCast(FuncBuilder &builder, Value *val, Type destTy) { + if (val->getType() == destTy) + return val; + return builder.create<toy::TypeCastOp>(val->getLoc(), val, destTy) + .getResult(); +} + +/// Create a type cast to turn a toy.array into a memref. The Toy Array will be +/// lowered to a memref during buffer allocation, at which point the type cast +/// becomes useless. +Value *memRefTypeCast(FuncBuilder &builder, Value *val) { + if (val->getType().isa<MemRefType>()) + return val; + auto toyArrayTy = val->getType().dyn_cast<toy::ToyArrayType>(); + if (!toyArrayTy) + return val; + return typeCast(builder, val, toyArrayTy.toMemref()); +} + +/// Lower a toy.add to an affine loop nest. +/// +/// This class inherit from `DialectOpConversion` and override `rewrite`, +/// similarly to the PatternRewriter introduced in the previous chapter. +/// It will be called by the DialectConversion framework (see `LateLowering` +/// class below). +class AddOpConversion : public DialectOpConversion { +public: + explicit AddOpConversion(MLIRContext *context) + : DialectOpConversion(toy::AddOp::getOperationName(), 1, context) {} + + /// Lower the `op` by generating IR using the `rewriter` builder. The builder + /// is setup with a new function, the `operands` array has been populated with + /// the rewritten operands for `op` in the new function. + /// The results created by the new IR with the builder are returned, and their + /// number must match the number of result of `op`. + SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, + FuncBuilder &rewriter) const override { + auto add = op->cast<toy::AddOp>(); + auto loc = add.getLoc(); + // Create a `toy.alloc` operation to allocate the output buffer for this op. + Value *result = memRefTypeCast( + rewriter, rewriter.create<toy::AllocOp>(loc, add.getResult()->getType()) + .getResult()); + Value *lhs = memRefTypeCast(rewriter, operands[0]); + Value *rhs = memRefTypeCast(rewriter, operands[1]); + + using namespace edsc; + ScopedContext scope(rewriter, loc); + ValueHandle zero = intrinsics::constant_index(0); + MemRefView vRes(result), vLHS(lhs), vRHS(rhs); + IndexedValue iRes(result), iLHS(lhs), iRHS(rhs); + IndexHandle i, j, M(vRes.ub(0)); + if (vRes.rank() == 1) { + LoopNestBuilder({&i}, {zero}, {M}, {1})({iRes(i) = iLHS(i) + iRHS(i)}); + } else { + assert(vRes.rank() == 2 && "only rank 1 and 2 are supported right now"); + IndexHandle N(vRes.ub(1)); + LoopNestBuilder({&i, &j}, {zero, zero}, {M, N}, + {1, 1})({iRes(i, j) = iLHS(i, j) + iRHS(i, j)}); + } + + // Return the newly allocated buffer, with a type.cast to preserve the + // consumers. + return {typeCast(rewriter, result, add.getType())}; + } +}; + +/// Lowers `toy.print` to a loop nest calling `printf` on every individual +/// elements of the array. +class PrintOpConversion : public DialectOpConversion { +public: + explicit PrintOpConversion(MLIRContext *context) + : DialectOpConversion(toy::PrintOp::getOperationName(), 1, context) {} + + SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, + FuncBuilder &rewriter) const override { + // Get or create the declaration of the printf function in the module. + Function *printfFunc = getPrintf(*op->getFunction()->getModule()); + + auto print = op->cast<toy::PrintOp>(); + auto loc = print.getLoc(); + // We will operate on a MemRef abstraction, we use a type.cast to get one + // if our operand is still a Toy array. + Value *operand = memRefTypeCast(rewriter, operands[0]); + Type retTy = printfFunc->getType().getResult(0); + + // Create our loop nest now + using namespace edsc; + using llvmCall = intrinsics::ValueBuilder<LLVM::CallOp>; + ScopedContext scope(rewriter, loc); + ValueHandle zero = intrinsics::constant_index(0); + ValueHandle fmtCst(getConstantCharBuffer(rewriter, loc, "%f ")); + MemRefView vOp(operand); + IndexedValue iOp(operand); + IndexHandle i, j, M(vOp.ub(0)); + + ValueHandle fmtEol(getConstantCharBuffer(rewriter, loc, "\n")); + if (vOp.rank() == 1) { + // clang-format off + LoopBuilder(&i, zero, M, 1)({ + llvmCall(retTy, + rewriter.getFunctionAttr(printfFunc), + {fmtCst, iOp(i)}) + }); + llvmCall(retTy, rewriter.getFunctionAttr(printfFunc), {fmtEol}); + // clang-format on + } else { + IndexHandle N(vOp.ub(1)); + // clang-format off + LoopBuilder(&i, zero, M, 1)({ + LoopBuilder(&j, zero, N, 1)({ + llvmCall(retTy, + rewriter.getFunctionAttr(printfFunc), + {fmtCst, iOp(i, j)}) + }), + llvmCall(retTy, rewriter.getFunctionAttr(printfFunc), {fmtEol}) + }); + // clang-format on + } + return {}; + } + +private: + // Turn a string into a toy.alloc (malloc/free abstraction) and a sequence + // of stores into the buffer, and return a MemRef into the buffer. + Value *getConstantCharBuffer(FuncBuilder &builder, Location loc, + StringRef data) const { + auto retTy = + builder.getMemRefType(data.size() + 1, builder.getIntegerType(8)); + Value *result = builder.create<toy::AllocOp>(loc, retTy).getResult(); + using namespace edsc; + using intrinsics::constant_index; + using intrinsics::constant_int; + ScopedContext scope(builder, loc); + MemRefView vOp(result); + IndexedValue iOp(result); + for (uint64_t i = 0; i < data.size(); ++i) { + iOp(constant_index(i)) = constant_int(data[i], 8); + } + iOp(constant_index(data.size())) = constant_int(0, 8); + return result; + } + + /// Return the prototype declaration for printf in the module, create it if + /// necessary. + Function *getPrintf(Module &module) const { + auto *printfFunc = module.getNamedFunction("printf"); + if (printfFunc) + return printfFunc; + + // Create a function declaration for printf, signature is `i32 (i8*, ...)` + Builder builder(&module); + MLIRContext *context = module.getContext(); + LLVM::LLVMDialect *llvmDialect = static_cast<LLVM::LLVMDialect *>( + module.getContext()->getRegisteredDialect("llvm")); + auto &llvmModule = llvmDialect->getLLVMModule(); + llvm::IRBuilder<> llvmBuilder(llvmModule.getContext()); + + auto llvmI32Ty = LLVM::LLVMType::get(context, llvmBuilder.getIntNTy(32)); + auto llvmI8PtrTy = + LLVM::LLVMType::get(context, llvmBuilder.getIntNTy(8)->getPointerTo()); + auto printfTy = builder.getFunctionType({llvmI8PtrTy}, {llvmI32Ty}); + printfFunc = new Function(builder.getUnknownLoc(), "printf", printfTy); + // It should be variadic, but we don't support it fully just yet. + printfFunc->setAttr("std.varargs", builder.getBoolAttr(true)); + module.getFunctions().push_back(printfFunc); + return printfFunc; + } +}; + +/// Lowers constant to a sequence of store in a buffer. +class ConstantOpConversion : public DialectOpConversion { +public: + explicit ConstantOpConversion(MLIRContext *context) + : DialectOpConversion(toy::ConstantOp::getOperationName(), 1, context) {} + + SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, + FuncBuilder &rewriter) const override { + toy::ConstantOp cstOp = op->cast<toy::ConstantOp>(); + auto loc = cstOp.getLoc(); + auto retTy = cstOp.getResult()->getType().cast<toy::ToyArrayType>(); + auto shape = retTy.getShape(); + Value *result = memRefTypeCast( + rewriter, rewriter.create<toy::AllocOp>(loc, retTy).getResult()); + + auto cstValue = cstOp.getValue(); + auto f64Ty = rewriter.getF64Type(); + using namespace edsc; + using intrinsics::constant_float; + using intrinsics::constant_index; + ScopedContext scope(rewriter, loc); + MemRefView vOp(result); + IndexedValue iOp(result); + for (uint64_t i = 0; i < shape[0]; ++i) { + if (shape.size() == 1) { + auto value = cstValue.getValue(ArrayRef<uint64_t>{i}) + .cast<FloatAttr>() + .getValue(); + iOp(constant_index(i)) = constant_float(value, f64Ty); + continue; + } + for (uint64_t j = 0; j < shape[1]; ++j) { + auto value = cstValue.getValue(ArrayRef<uint64_t>{i, j}) + .cast<FloatAttr>() + .getValue(); + iOp(constant_index(i), constant_index(j)) = + constant_float(value, f64Ty); + } + } + return {result}; + } +}; + +/// Lower transpose operation to an affine loop nest. +class TransposeOpConversion : public DialectOpConversion { +public: + explicit TransposeOpConversion(MLIRContext *context) + : DialectOpConversion(toy::TransposeOp::getOperationName(), 1, context) {} + + SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, + FuncBuilder &rewriter) const override { + auto transpose = op->cast<toy::TransposeOp>(); + auto loc = transpose.getLoc(); + Value *result = memRefTypeCast( + rewriter, + rewriter.create<toy::AllocOp>(loc, transpose.getResult()->getType()) + .getResult()); + Value *operand = memRefTypeCast(rewriter, operands[0]); + + using namespace edsc; + ScopedContext scope(rewriter, loc); + ValueHandle zero = intrinsics::constant_index(0); + MemRefView vRes(result), vOperand(operand); + IndexedValue iRes(result), iOperand(operand); + IndexHandle i, j, M(vRes.ub(0)), N(vRes.ub(1)); + // clang-format off + LoopNestBuilder({&i, &j}, {zero, zero}, {M, N}, {1, 1})({ + iRes(i, j) = iOperand(j, i) + }); + // clang-format on + + return {typeCast(rewriter, result, transpose.getType())}; + } +}; + +// Lower toy.return to standard return operation. +class ReturnOpConversion : public DialectOpConversion { +public: + explicit ReturnOpConversion(MLIRContext *context) + : DialectOpConversion(toy::ReturnOp::getOperationName(), 1, context) {} + + SmallVector<Value *, 4> rewrite(Operation *op, ArrayRef<Value *> operands, + FuncBuilder &rewriter) const override { + auto retOp = op->cast<toy::ReturnOp>(); + using namespace edsc; + auto loc = retOp.getLoc(); + // Argument is optional, handle both cases. + if (retOp.getNumOperands()) + rewriter.create<ReturnOp>(loc, operands[0]); + else + rewriter.create<ReturnOp>(loc); + return {}; + } +}; + +/// This is the main class registering our individual converter classes with +/// the DialectConversion framework in MLIR. +class LateLowering : public DialectConversion { +protected: + /// Initialize the list of converters. + llvm::DenseSet<DialectOpConversion *> + initConverters(MLIRContext *context) override { + return ConversionListBuilder<AddOpConversion, PrintOpConversion, + ConstantOpConversion, TransposeOpConversion, + ReturnOpConversion>::build(&allocator, + context); + } + + /// Convert a Toy type, this gets called for block and region arguments, and + /// attributes. + Type convertType(Type t) override { + if (auto array = t.cast<toy::ToyArrayType>()) { + return array.toMemref(); + } + return t; + } + +private: + llvm::BumpPtrAllocator allocator; +}; + +/// This is lowering to Linalg the parts that can be (matmul and add on arrays) +/// and is targeting LLVM otherwise. +struct LateLoweringPass : public ModulePass<LateLoweringPass> { + + void runOnModule() override { + // Perform Toy specific lowering + if (failed(LateLowering().convert(&getModule()))) { + getModule().getContext()->emitError( + UnknownLoc::get(getModule().getContext()), "Error lowering Toy\n"); + signalPassFailure(); + } + // At this point the IR is almost using only standard and affine dialects. + // A few things remain before we emit LLVM IR. First to reuse as much of + // MLIR as possible we will try to lower everything to the standard and/or + // affine dialect: they already include conversion to the LLVM dialect. + + // First patch calls type to return memref instead of ToyArray + for (auto &function : getModule()) { + function.walk([&](Operation *op) { + auto callOp = op->dyn_cast<CallOp>(); + if (!callOp) + return; + if (!callOp.getNumResults()) + return; + auto retToyTy = + callOp.getResult(0)->getType().dyn_cast<toy::ToyArrayType>(); + if (!retToyTy) + return; + callOp.getResult(0)->setType(retToyTy.toMemref()); + }); + } + + for (auto &function : getModule()) { + function.walk([&](Operation *op) { + // Turns toy.alloc into sequence of alloc/dealloc (later malloc/free). + if (auto allocOp = op->dyn_cast<toy::AllocOp>()) { + auto result = allocTensor(allocOp); + allocOp.replaceAllUsesWith(result); + allocOp.erase(); + return; + } + // Eliminate all type.cast before lowering to LLVM. + if (auto typeCastOp = op->dyn_cast<toy::TypeCastOp>()) { + typeCastOp.replaceAllUsesWith(typeCastOp.getOperand()); + typeCastOp.erase(); + return; + } + }); + } + + // Lower Linalg to affine + for (auto &function : getModule()) + linalg::lowerToLoops(&function); + + getModule().dump(); + + // Finally convert to LLVM Dialect + linalg::convertLinalg3ToLLVM(getModule()); + } + + /// Allocate buffers (malloc/free) for Toy operations. This can't be done as + /// part of dialect conversion framework since we need to insert `dealloc` + /// operations just before the return, but the conversion framework is + /// operating in a brand new function: we don't have the return to hook the + /// dealloc operations. + Value *allocTensor(toy::AllocOp alloc) { + FuncBuilder builder(alloc); + auto retTy = alloc.getResult()->getType(); + + auto memRefTy = retTy.dyn_cast<MemRefType>(); + if (!memRefTy) + memRefTy = retTy.cast<toy::ToyArrayType>().toMemref(); + if (!memRefTy) { + alloc.emitOpError("is expected to allocate a Toy array or a MemRef"); + llvm_unreachable("fatal error"); + } + auto loc = alloc.getLoc(); + Value *result = builder.create<AllocOp>(loc, memRefTy).getResult(); + + // Insert a `dealloc` operation right before the `return` operations, unless + // it is returned itself in which case the caller is responsible for it. + builder.getFunction()->walk([&](Operation *op) { + auto returnOp = op->dyn_cast<ReturnOp>(); + if (!returnOp) + return; + if (returnOp.getNumOperands() && returnOp.getOperand(0) == alloc) + return; + builder.setInsertionPoint(returnOp); + builder.create<DeallocOp>(alloc.getLoc(), result); + }); + return result; + } +}; +} // end anonymous namespace + +namespace toy { +Pass *createLateLoweringPass() { return new LateLoweringPass(); } + +std::unique_ptr<DialectConversion> makeToyLateLowering() { + return llvm::make_unique<LateLowering>(); +} + +} // namespace toy diff --git a/mlir/MLIRGen.cpp b/mlir/MLIRGen.cpp new file mode 100644 index 0000000..e2001fb --- /dev/null +++ b/mlir/MLIRGen.cpp @@ -0,0 +1,480 @@ +//===- MLIRGen.cpp - MLIR Generation from a Toy AST -----------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements a simple IR generation targeting MLIR from a Module AST +// for the Toy language. +// +//===----------------------------------------------------------------------===// + +#include "toy/MLIRGen.h" +#include "toy/AST.h" +#include "toy/Dialect.h" + +#include "mlir/IR/Attributes.h" +#include "mlir/IR/Builders.h" +#include "mlir/IR/Location.h" +#include "mlir/IR/MLIRContext.h" +#include "mlir/IR/Module.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/IR/Types.h" +#include "mlir/StandardOps/Ops.h" + +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/ScopedHashTable.h" +#include "llvm/Support/raw_ostream.h" +#include <numeric> + +using namespace toy; +using llvm::cast; +using llvm::dyn_cast; +using llvm::isa; +using llvm::make_unique; +using llvm::ScopedHashTableScope; +using llvm::SmallVector; +using llvm::StringRef; +using llvm::Twine; + +namespace { + +/// Implementation of a simple MLIR emission from the Toy AST. +/// +/// This will emit operations that are specific to the Toy language, preserving +/// the semantics of the language and (hopefully) allow to perform accurate +/// analysis and transformation based on these high level semantics. +/// +/// At this point we take advantage of the "raw" MLIR APIs to create operations +/// that haven't been registered in any way with MLIR. These operations are +/// unknown to MLIR, custom passes could operate by string-matching the name of +/// these operations, but no other type checking or semantic is associated with +/// them natively by MLIR. +class MLIRGenImpl { +public: + MLIRGenImpl(mlir::MLIRContext &context) : context(context) {} + + /// Public API: convert the AST for a Toy module (source file) to an MLIR + /// Module. + std::unique_ptr<mlir::Module> mlirGen(ModuleAST &moduleAST) { + // We create an empty MLIR module and codegen functions one at a time and + // add them to the module. + theModule = make_unique<mlir::Module>(&context); + + for (FunctionAST &F : moduleAST) { + auto func = mlirGen(F); + if (!func) + return nullptr; + theModule->getFunctions().push_back(func.release()); + } + + // FIXME: (in the next chapter...) without registering a dialect in MLIR, + // this won't do much, but it should at least check some structural + // properties. + if (failed(theModule->verify())) { + context.emitError(mlir::UnknownLoc::get(&context), + "Module verification error"); + return nullptr; + } + + return std::move(theModule); + } + +private: + /// In MLIR (like in LLVM) a "context" object holds the memory allocation and + /// the ownership of many internal structure of the IR and provide a level + /// of "uniquing" across multiple modules (types for instance). + mlir::MLIRContext &context; + + /// A "module" matches a source file: it contains a list of functions. + std::unique_ptr<mlir::Module> theModule; + + /// The builder is a helper class to create IR inside a function. It is + /// re-initialized every time we enter a function and kept around as a + /// convenience for emitting individual operations. + /// The builder is stateful, in particular it keeeps an "insertion point": + /// this is where the next operations will be introduced. + std::unique_ptr<mlir::FuncBuilder> builder; + + /// The symbol table maps a variable name to a value in the current scope. + /// Entering a function creates a new scope, and the function arguments are + /// added to the mapping. When the processing of a function is terminated, the + /// scope is destroyed and the mappings created in this scope are dropped. + llvm::ScopedHashTable<StringRef, mlir::Value *> symbolTable; + + /// Helper conversion for a Toy AST location to an MLIR location. + mlir::FileLineColLoc loc(Location loc) { + return mlir::FileLineColLoc::get( + mlir::UniquedFilename::get(*loc.file, &context), loc.line, loc.col, + &context); + } + + /// Declare a variable in the current scope, return true if the variable + /// wasn't declared yet. + bool declare(llvm::StringRef var, mlir::Value *value) { + if (symbolTable.count(var)) { + return false; + } + symbolTable.insert(var, value); + return true; + } + + /// Create the prototype for an MLIR function with as many arguments as the + /// provided Toy AST prototype. + mlir::Function *mlirGen(PrototypeAST &proto) { + // This is a generic function, the return type will be inferred later. + llvm::SmallVector<mlir::Type, 4> ret_types; + // Arguments type is uniformly a generic array. + llvm::SmallVector<mlir::Type, 4> arg_types(proto.getArgs().size(), + getType(VarType{})); + auto func_type = mlir::FunctionType::get(arg_types, ret_types, &context); + auto *function = new mlir::Function(loc(proto.loc()), proto.getName(), + func_type, /* attrs = */ {}); + + // Mark the function as generic: it'll require type specialization for every + // call site. + if (function->getNumArguments()) + function->setAttr("toy.generic", mlir::BoolAttr::get(true, &context)); + + return function; + } + + /// Emit a new function and add it to the MLIR module. + std::unique_ptr<mlir::Function> mlirGen(FunctionAST &funcAST) { + // Create a scope in the symbol table to hold variable declarations. + ScopedHashTableScope<llvm::StringRef, mlir::Value *> var_scope(symbolTable); + + // Create an MLIR function for the given prototype. + std::unique_ptr<mlir::Function> function(mlirGen(*funcAST.getProto())); + if (!function) + return nullptr; + + // Let's start the body of the function now! + // In MLIR the entry block of the function is special: it must have the same + // argument list as the function itself. + function->addEntryBlock(); + + auto &entryBlock = function->front(); + auto &protoArgs = funcAST.getProto()->getArgs(); + // Declare all the function arguments in the symbol table. + for (const auto &name_value : + llvm::zip(protoArgs, entryBlock.getArguments())) { + declare(std::get<0>(name_value)->getName(), std::get<1>(name_value)); + } + + // Create a builder for the function, it will be used throughout the codegen + // to create operations in this function. + builder = llvm::make_unique<mlir::FuncBuilder>(function.get()); + + // Emit the body of the function. + if (!mlirGen(*funcAST.getBody())) + return nullptr; + + // Implicitly return void if no return statement was emited. + // FIXME: we may fix the parser instead to always return the last expression + // (this would possibly help the REPL case later) + if (function->getBlocks().back().back().getName().getStringRef() != + "toy.return") { + ReturnExprAST fakeRet(funcAST.getProto()->loc(), llvm::None); + mlirGen(fakeRet); + } + + return function; + } + + /// Emit a binary operation + mlir::Value *mlirGen(BinaryExprAST &binop) { + // First emit the operations for each side of the operation before emitting + // the operation itself. For example if the expression is `a + foo(a)` + // 1) First it will visiting the LHS, which will return a reference to the + // value holding `a`. This value should have been emitted at declaration + // time and registered in the symbol table, so nothing would be + // codegen'd. If the value is not in the symbol table, an error has been + // emitted and nullptr is returned. + // 2) Then the RHS is visited (recursively) and a call to `foo` is emitted + // and the result value is returned. If an error occurs we get a nullptr + // and propagate. + // + mlir::Value *L = mlirGen(*binop.getLHS()); + if (!L) + return nullptr; + mlir::Value *R = mlirGen(*binop.getRHS()); + if (!R) + return nullptr; + auto location = loc(binop.loc()); + + // Derive the operation name from the binary operator. At the moment we only + // support '+' and '*'. + switch (binop.getOp()) { + case '+': + return builder->create<AddOp>(location, L, R).getResult(); + break; + case '*': + return builder->create<MulOp>(location, L, R).getResult(); + default: + context.emitError(loc(binop.loc()), + Twine("Error: invalid binary operator '") + + Twine(binop.getOp()) + "'"); + return nullptr; + } + } + + // This is a reference to a variable in an expression. The variable is + // expected to have been declared and so should have a value in the symbol + // table, otherwise emit an error and return nullptr. + mlir::Value *mlirGen(VariableExprAST &expr) { + if (symbolTable.count(expr.getName())) + return symbolTable.lookup(expr.getName()); + context.emitError(loc(expr.loc()), Twine("Error: unknown variable '") + + expr.getName() + "'"); + return nullptr; + } + + // Emit a return operation, return true on success. + bool mlirGen(ReturnExprAST &ret) { + auto location = loc(ret.loc()); + // `return` takes an optional expression, we need to account for it here. + if (!ret.getExpr().hasValue()) { + builder->create<ReturnOp>(location); + return true; + } + auto *expr = mlirGen(*ret.getExpr().getValue()); + if (!expr) + return false; + builder->create<ReturnOp>(location, expr); + return true; + } + + // Emit a literal/constant array. It will be emitted as a flattened array of + // data in an Attribute attached to a `toy.constant` operation. + // See documentation on [Attributes](LangRef.md#attributes) for more details. + // Here is an excerpt: + // + // Attributes are the mechanism for specifying constant data in MLIR in + // places where a variable is never allowed [...]. They consist of a name + // and a [concrete attribute value](#attribute-values). It is possible to + // attach attributes to operations, functions, and function arguments. The + // set of expected attributes, their structure, and their interpretation + // are all contextually dependent on what they are attached to. + // + // Example, the source level statement: + // var a<2, 3> = [[1, 2, 3], [4, 5, 6]]; + // will be converted to: + // %0 = "toy.constant"() {value: dense<tensor<2x3xf64>, + // [[1.000000e+00, 2.000000e+00, 3.000000e+00], + // [4.000000e+00, 5.000000e+00, 6.000000e+00]]>} : () -> memref<2x3xf64> + // + mlir::Value *mlirGen(LiteralExprAST &lit) { + auto location = loc(lit.loc()); + // The attribute is a vector with an attribute per element (number) in the + // array, see `collectData()` below for more details. + std::vector<mlir::Attribute> data; + data.reserve(std::accumulate(lit.getDims().begin(), lit.getDims().end(), 1, + std::multiplies<int>())); + collectData(lit, data); + + // FIXME: using a tensor type is a HACK here. + // Can we do differently without registering a dialect? Using a string blob? + mlir::Type elementType = mlir::FloatType::getF64(&context); + auto dataType = builder->getTensorType(lit.getDims(), elementType); + + // This is the actual attribute that actually hold the list of values for + // this array literal. + auto dataAttribute = builder->getDenseElementsAttr(dataType, data) + .cast<mlir::DenseElementsAttr>(); + + // Build the MLIR op `toy.constant`, only boilerplate below. + return builder->create<ConstantOp>(location, lit.getDims(), dataAttribute) + .getResult(); + } + + // Recursive helper function to accumulate the data that compose an array + // literal. It flattens the nested structure in the supplied vector. For + // example with this array: + // [[1, 2], [3, 4]] + // we will generate: + // [ 1, 2, 3, 4 ] + // Individual numbers are wrapped in a light wrapper `mlir::FloatAttr`. + // Attributes are the way MLIR attaches constant to operations and functions. + void collectData(ExprAST &expr, std::vector<mlir::Attribute> &data) { + if (auto *lit = dyn_cast<LiteralExprAST>(&expr)) { + for (auto &value : lit->getValues()) + collectData(*value, data); + return; + } + assert(isa<NumberExprAST>(expr) && "expected literal or number expr"); + mlir::Type elementType = mlir::FloatType::getF64(&context); + auto attr = mlir::FloatAttr::getChecked( + elementType, cast<NumberExprAST>(expr).getValue(), loc(expr.loc())); + data.push_back(attr); + } + + // Emit a call expression. It emits specific operations for the `transpose` + // builtin. Other identifiers are assumed to be user-defined functions. + mlir::Value *mlirGen(CallExprAST &call) { + auto location = loc(call.loc()); + std::string callee = call.getCallee(); + if (callee == "transpose") { + if (call.getArgs().size() != 1) { + context.emitError( + location, Twine("MLIR codegen encountered an error: toy.transpose " + "does not accept multiple arguments")); + return nullptr; + } + mlir::Value *arg = mlirGen(*call.getArgs()[0]); + return builder->create<TransposeOp>(location, arg).getResult(); + } + + // Codegen the operands first + SmallVector<mlir::Value *, 4> operands; + for (auto &expr : call.getArgs()) { + auto *arg = mlirGen(*expr); + if (!arg) + return nullptr; + operands.push_back(arg); + } + // Calls to user-defined function are mapped to a custom call that takes + // the callee name as an attribute. + return builder->create<GenericCallOp>(location, call.getCallee(), operands) + .getResult(); + } + + // Emit a call expression. It emits specific operations for two builtins: + // transpose(x) and print(x). Other identifiers are assumed to be user-defined + // functions. Return false on failure. + bool mlirGen(PrintExprAST &call) { + auto *arg = mlirGen(*call.getArg()); + if (!arg) + return false; + auto location = loc(call.loc()); + builder->create<PrintOp>(location, arg); + return true; + } + + // Emit a constant for a single number (FIXME: semantic? broadcast?) + mlir::Value *mlirGen(NumberExprAST &num) { + auto location = loc(num.loc()); + mlir::Type elementType = mlir::FloatType::getF64(&context); + auto attr = mlir::FloatAttr::getChecked(elementType, num.getValue(), + loc(num.loc())); + return builder->create<ConstantOp>(location, attr).getResult(); + } + + // Dispatch codegen for the right expression subclass using RTTI. + mlir::Value *mlirGen(ExprAST &expr) { + switch (expr.getKind()) { + case toy::ExprAST::Expr_BinOp: + return mlirGen(cast<BinaryExprAST>(expr)); + case toy::ExprAST::Expr_Var: + return mlirGen(cast<VariableExprAST>(expr)); + case toy::ExprAST::Expr_Literal: + return mlirGen(cast<LiteralExprAST>(expr)); + case toy::ExprAST::Expr_Call: + return mlirGen(cast<CallExprAST>(expr)); + case toy::ExprAST::Expr_Num: + return mlirGen(cast<NumberExprAST>(expr)); + default: + context.emitError( + loc(expr.loc()), + Twine("MLIR codegen encountered an unhandled expr kind '") + + Twine(expr.getKind()) + "'"); + return nullptr; + } + } + + // Handle a variable declaration, we'll codegen the expression that forms the + // initializer and record the value in the symbol table before returning it. + // Future expressions will be able to reference this variable through symbol + // table lookup. + mlir::Value *mlirGen(VarDeclExprAST &vardecl) { + mlir::Value *value = nullptr; + auto location = loc(vardecl.loc()); + if (auto init = vardecl.getInitVal()) { + value = mlirGen(*init); + if (!value) + return nullptr; + // We have the initializer value, but in case the variable was declared + // with specific shape, we emit a "reshape" operation. It will get + // optimized out later as needed. + if (!vardecl.getType().shape.empty()) { + value = builder + ->create<ReshapeOp>( + location, value, + getType(vardecl.getType()).cast<ToyArrayType>()) + .getResult(); + } + } else { + context.emitError(loc(vardecl.loc()), + "Missing initializer in variable declaration"); + return nullptr; + } + // Register the value in the symbol table + declare(vardecl.getName(), value); + return value; + } + + /// Codegen a list of expression, return false if one of them hit an error. + bool mlirGen(ExprASTList &blockAST) { + ScopedHashTableScope<llvm::StringRef, mlir::Value *> var_scope(symbolTable); + for (auto &expr : blockAST) { + // Specific handling for variable declarations, return statement, and + // print. These can only appear in block list and not in nested + // expressions. + if (auto *vardecl = dyn_cast<VarDeclExprAST>(expr.get())) { + if (!mlirGen(*vardecl)) + return false; + continue; + } + if (auto *ret = dyn_cast<ReturnExprAST>(expr.get())) { + if (!mlirGen(*ret)) + return false; + return true; + } + if (auto *print = dyn_cast<PrintExprAST>(expr.get())) { + if (!mlirGen(*print)) + return false; + continue; + } + // Generic expression dispatch codegen. + if (!mlirGen(*expr)) + return false; + } + return true; + } + + /// Build a type from a list of shape dimensions. Types are `array` followed + /// by an optional dimension list, example: array<2, 2> + /// They are wrapped in a `toy` dialect (see next chapter) and get printed: + /// !toy.array<2, 2> + template <typename T> mlir::Type getType(T shape) { + SmallVector<int64_t, 8> shape64(shape.begin(), shape.end()); + return ToyArrayType::get(&context, shape64); + } + + /// Build an MLIR type from a Toy AST variable type + /// (forward to the generic getType(T) above). + mlir::Type getType(const VarType &type) { return getType(type.shape); } +}; + +} // namespace + +namespace toy { + +// The public API for codegen. +std::unique_ptr<mlir::Module> mlirGen(mlir::MLIRContext &context, + ModuleAST &moduleAST) { + return MLIRGenImpl(context).mlirGen(moduleAST); +} + +} // namespace toy diff --git a/mlir/ShapeInferencePass.cpp b/mlir/ShapeInferencePass.cpp new file mode 100644 index 0000000..7e3ea3f --- /dev/null +++ b/mlir/ShapeInferencePass.cpp @@ -0,0 +1,387 @@ +//===- ShapeInferencePass.cpp - Toy Shape Inference / Func Specialization -===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements a Module level pass performing interprocedural +// propagation of array shapes through function specialization. +// +//===----------------------------------------------------------------------===// + +#include "toy/Dialect.h" + +#include "mlir/IR/BlockAndValueMapping.h" +#include "mlir/IR/Builders.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/Pass/Pass.h" +#include "mlir/StandardOps/Ops.h" +#include "mlir/Support/LogicalResult.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> + +#define DEBUG_TYPE "toy-shape-inference" + +using namespace toy; +using llvm::MutableArrayRef; +using llvm::SmallVector; +using llvm::SmallVectorImpl; +using llvm::StringRef; +using llvm::Twine; + +/// Create mangled name for function specialization. We will simply append the +/// shape of the arguments to the function name. For example calling +/// +/// "toy.generic_call"(%1, %3) {callee: "foo"} +/// : (!toy<"array<2, 3>">, !toy<"array<2, 3>">) -> !toy<"array"> +/// +/// would be mangled foo_2x3_2x3. This mangling isn't robust as the user could +/// have provide a function with a similar name. But we will claim this as a +/// feature: this allow the user to provide custom specialization! +static std::string mangle(StringRef funcName, + MutableArrayRef<mlir::OpOperand> operands) { + std::string mangledName; + mangledName.reserve(funcName.size() + operands.size() * 6); + mangledName = funcName; + for (auto &operand : operands) { + auto arrayTy = operand.get()->getType().cast<ToyArrayType>(); + mangledName += "_"; + const char *sep = ""; + for (auto dim : arrayTy.getShape()) { + mangledName += (sep + Twine(dim)).str(); + sep = "x"; + } + } + return mangledName; +} + +namespace { + +/// The ShapeInferencePass is a ModulePass: it will run on the Module as a +/// whole. MLIR also supports FunctionPass which are restricted to modify a +/// single function at a time. This pass couldn't be a function pass due the +/// nature of its interprocedural transformations. +/// +/// The algorithm has two levels, first intra-procedurally: +/// +/// 1) Build a worklist containing all the operations that are returning +/// a generic Toy array: these are the operations that need shape +/// inference. +/// 2) Iterate on the worklist: +/// a) find an operation to process: the next ready operation in the +/// worklist has all of its arguments non-generic, +/// b) if no operation is found, break out of the loop, +/// c) remove the operation from the worklist, +/// d) infer the shape of its output from the arguments type. +/// 3) If the worklist is empty, the algorithm succeeded and we infer the +/// return type for the function from the return operation. +/// +/// There is a twist though: when a call to a generic function is encountered, +/// shape inference requires the return type of the callee to be inferred first. +/// At this point we need to run specialize the callee by cloning it. Here is +/// the inter-procedural flow: +/// +/// 1) Keep a worklist of function to process. Start with function "main". +/// 2) While the worklist isn't empty: +/// a) Take the last inserted function in the worklist. +/// b) Run the intra-procedural shape inference on this function. +/// c) If the intra-procedural shape inference can't complete, it returns +/// a Function that needs to be inferred first. In this case, queue this +/// new function and continue. Otherwise the inference succeeded and we +/// can pop from the queue. +/// +class ShapeInferencePass : public mlir::ModulePass<ShapeInferencePass> { +public: + // One entry in the inter-procedural worklist. It keeps track of the + // function to process, the mangled name for this specialization, and the + // types of the arguments on which to specialize. + struct FunctionToSpecialize { + mlir::Function *function; + std::string mangledName; + std::vector<mlir::Type> argumentsType; + }; + + void runOnModule() override { + auto &module = getModule(); + auto *main = module.getNamedFunction("main"); + if (!main) { + module.getContext()->emitError( + mlir::UnknownLoc::get(module.getContext()), + "Shape inference failed: can't find a main function\n"); + signalPassFailure(); + return; + } + + /// Inter-procedural loop, initialize with `main` and iterate till + /// successfully infer the full reachable call-graph from main. + SmallVector<FunctionToSpecialize, 8> worklist; + worklist.push_back({main, "", {}}); + while (!worklist.empty()) { + if (failed(specialize(worklist))) + return; + } + + // Delete any generic function left + // FIXME: we may want this as a separate pass. + for (mlir::Function &function : llvm::make_early_inc_range(module)) { + if (auto genericAttr = + function.getAttrOfType<mlir::BoolAttr>("toy.generic")) { + if (genericAttr.getValue()) + function.erase(); + } + } + } + + /// Run inference on a function. If a mangledName is provided, we need to + /// specialize the function: to this end clone it first. + mlir::LogicalResult + specialize(SmallVectorImpl<FunctionToSpecialize> &funcWorklist) { + FunctionToSpecialize &functionToSpecialize = funcWorklist.back(); + mlir::Function *f = functionToSpecialize.function; + + // Check if cloning for specialization is needed (usually anything but main) + // We will create a new function with the concrete types for the parameters + // and clone the body into it. + if (!functionToSpecialize.mangledName.empty()) { + if (getModule().getNamedFunction(functionToSpecialize.mangledName)) { + funcWorklist.pop_back(); + // Function already specialized, move on. + return mlir::success(); + } + // Create a new function with a generic array return type, it will be + // updated when the inference for the function body completes. + auto type = mlir::FunctionType::get(functionToSpecialize.argumentsType, + {ToyArrayType::get(&getContext())}, + &getContext()); + auto *newFunction = new mlir::Function( + f->getLoc(), functionToSpecialize.mangledName, type, f->getAttrs()); + getModule().getFunctions().push_back(newFunction); + + // Clone the function body + mlir::BlockAndValueMapping mapper; + f->cloneInto(newFunction, mapper); + LLVM_DEBUG({ + llvm::dbgs() << "====== Cloned : \n"; + f->dump(); + llvm::dbgs() << "====== Into : \n"; + newFunction->dump(); + }); + f = newFunction; + f->setAttr("toy.generic", mlir::BoolAttr::get(false, &getContext())); + // Remap the entry-block arguments + // FIXME: this seems like a bug in `cloneInto()` above? + auto &entryBlock = f->getBlocks().front(); + int blockArgSize = entryBlock.getArguments().size(); + assert(blockArgSize == f->getType().getInputs().size()); + entryBlock.addArguments(f->getType().getInputs()); + auto argList = entryBlock.getArguments(); + for (int argNum = 0; argNum < blockArgSize; ++argNum) { + argList[0]->replaceAllUsesWith(argList[blockArgSize]); + entryBlock.eraseArgument(0); + } + assert(succeeded(f->verify())); + } + LLVM_DEBUG(llvm::dbgs() + << "Run shape inference on : '" << f->getName() << "'\n"); + + auto *toyDialect = getContext().getRegisteredDialect("toy"); + if (!toyDialect) { + getContext().emitError(mlir::UnknownLoc::get(&getContext()), + "Toy dialect is not registered"); + signalPassFailure(); + return mlir::failure(); + } + + // Populate the worklist with the operations that need shape inference: + // these are the Toy operations that return a generic array. + llvm::SmallPtrSet<mlir::Operation *, 16> opWorklist; + f->walk([&](mlir::Operation *op) { + if (op->getDialect() == toyDialect) { + if (op->getNumResults() == 1 && + op->getResult(0)->getType().cast<ToyArrayType>().isGeneric()) + opWorklist.insert(op); + } + }); + + // Iterate on the operations in the worklist until all operations have been + // inferred or no change happened (fix point). + while (!opWorklist.empty()) { + // Find the next operation ready for inference, that is an operation + // with all operands already resolved (non-generic). + auto nextop = llvm::find_if(opWorklist, [](mlir::Operation *op) { + return llvm::all_of(op->getOperands(), [](mlir::Value *v) { + return !v->getType().cast<ToyArrayType>().isGeneric(); + }); + }); + if (nextop == opWorklist.end()) + break; // failure: no operations can be inferred. + + mlir::Operation *op = *nextop; + opWorklist.erase(op); + LLVM_DEBUG(llvm::dbgs() << "Inferring shape for: " << *op << "\n"); + + // The add operation is trivial: propagate the input type as is. + if (auto addOp = op->dyn_cast<AddOp>()) { + op->getResult(0)->setType(op->getOperand(0)->getType()); + continue; + } + + // Transpose is easy: just invert the dimensions. + if (op->getName().getStringRef() == "toy.transpose") { + SmallVector<int64_t, 2> dims; + auto arrayTy = op->getOperand(0)->getType().cast<ToyArrayType>(); + dims.insert(dims.end(), arrayTy.getShape().begin(), + arrayTy.getShape().end()); + if (dims.size() == 2) + std::swap(dims[0], dims[1]); + op->getResult(0)->setType(ToyArrayType::get(&getContext(), dims)); + continue; + } + + // Multiplication is a bit trickier, handle rank 1 as dot product and rank + // 2 as matrix multiplications. + // We need to be careful about rank mismatch here: the verifier could + // catch it but shape inference earlier in the pass could generate an + // invalid IR (from an invalid Toy input of course) and we wouldn't want + // to crash here. + if (auto mulOp = op->dyn_cast<MulOp>()) { + auto lhs = mulOp.getLHS()->getType().cast<ToyArrayType>(); + auto rhs = mulOp.getRHS()->getType().cast<ToyArrayType>(); + auto lhsRank = lhs.getShape().size(); + auto rhsRank = rhs.getShape().size(); + if (lhsRank != rhsRank) { + op->emitError("Shape mismatch: LHS and RHS must have the same " + "rank for multiplication, got " + + Twine(lhsRank) + " vs " + Twine(lhsRank)); + return mlir::failure(); + } + SmallVector<int64_t, 2> dims; + if (lhsRank == 1) { + // dot product, result shape is <1> + dims.push_back(1); + } else { + if (lhsRank != 2) { + op->emitError( + "Shape mismatch: expect rank 1 or 2 for mul operands, got " + + Twine(lhsRank)); + return mlir::failure(); + } + dims.push_back(lhs.getShape()[0]); + dims.push_back(rhs.getShape()[1]); + } + op->getResult(0)->setType(ToyArrayType::get(&getContext(), dims)); + continue; + } + + // Process calls: lookup the callee after mangling the name with the + // argument shapes. If the callee does not exist, we stop the inference + // for this function, queue the callee in the inter-procedural work list, + // and return. The current function stays in the work list and will + // restart after the callee is processed. + if (auto callOp = op->dyn_cast<GenericCallOp>()) { + auto calleeName = callOp.getCalleeName(); + auto *callee = getModule().getNamedFunction(calleeName); + if (!callee) { + f->emitError( + llvm::Twine("Shape inference failed, call to unknown '") + + calleeName + "'"); + signalPassFailure(); + return mlir::failure(); + } + auto mangledName = mangle(calleeName, op->getOpOperands()); + LLVM_DEBUG(llvm::dbgs() << "Found callee to infer: '" << calleeName + << "', mangled: '" << mangledName << "'\n"); + auto *mangledCallee = getModule().getNamedFunction(mangledName); + if (!mangledCallee) { + // Can't find the target, this is where we queue the request for the + // callee and stop the inference for the current function now. + std::vector<mlir::Type> funcArgs; + for (auto operand : op->getOperands()) + funcArgs.push_back(operand->getType()); + funcWorklist.push_back( + {callee, std::move(mangledName), std::move(funcArgs)}); + return mlir::success(); + } + // Found a specialized callee! Let's turn this into a normal call + // operation. + SmallVector<mlir::Value *, 8> operands; + for (mlir::Value *v : op->getOperands()) + operands.push_back(v); + mlir::FuncBuilder builder(f); + builder.setInsertionPoint(op); + auto newCall = + builder.create<mlir::CallOp>(op->getLoc(), mangledCallee, operands); + if (newCall.getNumResults()) { + op->getResult(0)->replaceAllUsesWith(newCall.getResult(0)); + op->erase(); + continue; + } + } + } + + // Done with inference on this function, removing it from the worklist. + funcWorklist.pop_back(); + // Mark the function as non-generic now that inference has succeeded + f->setAttr("toy.generic", mlir::BoolAttr::get(false, &getContext())); + + // If the operation worklist isn't empty, this indicates a failure. + if (!opWorklist.empty()) { + std::string str; + llvm::raw_string_ostream errorMsg(str); + errorMsg << "Shape inference failed, " << opWorklist.size() + << " operations couldn't be inferred\n"; + for (auto *ope : opWorklist) + errorMsg << " - " << *ope << "\n"; + f->emitError(errorMsg.str()); + signalPassFailure(); + return mlir::failure(); + } + + // Finally, update the return type of the function based on the argument to + // the return operation. + for (auto &block : f->getBlocks()) { + auto ret = block.getTerminator()->cast<ReturnOp>(); + if (!ret) + continue; + if (ret.getNumOperands() && + f->getType().getResult(0) == ret.getOperand()->getType()) + // type match, we're done + break; + SmallVector<mlir::Type, 1> retTy; + if (ret.getNumOperands()) + retTy.push_back(ret.getOperand()->getType()); + mlir::Type elementType = mlir::FloatType::getF64(&getContext()); + std::vector<mlir::Type> argumentsType; + for (auto arg : f->getArguments()) + argumentsType.push_back(arg->getType()); + auto newType = + mlir::FunctionType::get(argumentsType, retTy, &getContext()); + f->setType(newType); + assert(succeeded(f->verify())); + break; + } + return mlir::success(); + } +}; +} // end anonymous namespace + +namespace toy { +mlir::Pass *createShapeInferencePass() { return new ShapeInferencePass(); } +} // namespace toy diff --git a/mlir/ToyCombine.cpp b/mlir/ToyCombine.cpp new file mode 100644 index 0000000..8d6aed6 --- /dev/null +++ b/mlir/ToyCombine.cpp @@ -0,0 +1,209 @@ +//===- ToyCombine.cpp - Toy High Level Optimizer --------------------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements a simple combiner for optimizing pattern in the Toy +// dialect. +// +//===----------------------------------------------------------------------===// + +#include "toy/Dialect.h" + +#include "mlir/IR/Operation.h" +#include "mlir/IR/PatternMatch.h" +#include "mlir/IR/StandardTypes.h" + +#include <numeric> + +namespace toy { + +namespace { + +/// Fold transpose(transpose(x)) -> transpose(x) +struct SimplifyRedundantTranspose : public mlir::RewritePattern { + /// We register this pattern to match every toy.transpose in the IR. + /// The "benefit" is used by the framework to order the patterns and process + /// them in order of profitability. + SimplifyRedundantTranspose(mlir::MLIRContext *context) + : RewritePattern(TransposeOp::getOperationName(), /* benefit = */ 1, + context) {} + + /// This method is attempting to match a pattern and rewrite it. The rewriter + /// argument is the orchestrator of the sequence of rewrites. It is expected + /// to interact with it to perform any changes to the IR from here. + mlir::PatternMatchResult + matchAndRewrite(mlir::Operation *op, + mlir::PatternRewriter &rewriter) const override { + // We can directly cast the current operation as this will only get invoked + // on TransposeOp. + TransposeOp transpose = op->cast<TransposeOp>(); + // look through the input to the current transpose + mlir::Value *transposeInput = transpose.getOperand(); + mlir::Operation *transposeInputInst = transposeInput->getDefiningOp(); + // If the input is defined by another Transpose, bingo! + TransposeOp transposeInputOp = + mlir::dyn_cast_or_null<TransposeOp>(transposeInputInst); + if (!transposeInputOp) + return matchFailure(); + + // Use the rewriter to perform the replacement + rewriter.replaceOp(op, {transposeInputOp.getOperand()}, {transposeInputOp}); + return matchSuccess(); + } +}; + +/// Fold reshape(constant(x)) -> constant(x'), with x' being reshaped in place. +struct SimplifyReshapeConstant : public mlir::RewritePattern { + SimplifyReshapeConstant(mlir::MLIRContext *context) + : RewritePattern(ReshapeOp::getOperationName(), /* benefit = */ 1, + context) {} + + mlir::PatternMatchResult + matchAndRewrite(mlir::Operation *op, + mlir::PatternRewriter &rewriter) const override { + ReshapeOp reshape = op->cast<ReshapeOp>(); + // look through the input to the current reshape + mlir::Value *reshapeInput = reshape.getOperand(); + mlir::Operation *reshapeInputInst = reshapeInput->getDefiningOp(); + // If the input is defined by another reshape, bingo! + ConstantOp constantOp = + mlir::dyn_cast_or_null<ConstantOp>(reshapeInputInst); + if (!constantOp) + return matchFailure(); + + auto reshapeType = op->getResult(0)->getType().cast<ToyArrayType>(); + if (auto valueAttr = + constantOp.getAttrOfType<mlir::DenseElementsAttr>("value")) { + // FIXME Check matching of element count! + // auto oldType = constantOp.getType(); + auto newType = rewriter.getTensorType( + reshapeType.getShape(), valueAttr.getType().getElementType()); + auto newAttr = + mlir::DenseElementsAttr::get(newType, valueAttr.getRawData()); + auto newConstant = rewriter.create<ConstantOp>( + constantOp.getLoc(), reshapeType.getShape(), newAttr); + rewriter.replaceOp(op, {newConstant}); + } else if (auto valueAttr = + constantOp.getAttrOfType<mlir::FloatAttr>("value")) { + // Broadcast + auto dataSize = std::accumulate(reshapeType.getShape().begin(), + reshapeType.getShape().end(), 1, + std::multiplies<int>()); + std::vector<mlir::Attribute> data(dataSize, valueAttr); + auto tensorTy = rewriter.getTensorType(reshapeType.getShape(), + reshapeType.getElementType()); + auto newAttr = mlir::DenseElementsAttr::get(tensorTy, data); + auto newConstant = rewriter.create<ConstantOp>( + constantOp.getLoc(), reshapeType.getShape(), newAttr); + rewriter.replaceOp(op, {newConstant}); + } else { + llvm_unreachable("Unsupported Constant format"); + } + return matchSuccess(); + } +}; + +/// Fold reshape(reshape(x)) -> reshape(x) +struct SimplifyReshapeReshape : public mlir::RewritePattern { + SimplifyReshapeReshape(mlir::MLIRContext *context) + : RewritePattern(ReshapeOp::getOperationName(), /* benefit = */ 1, + context) {} + + mlir::PatternMatchResult + matchAndRewrite(mlir::Operation *op, + mlir::PatternRewriter &rewriter) const override { + ReshapeOp reshape = op->cast<ReshapeOp>(); + // look through the input to the current reshape + mlir::Value *reshapeInput = reshape.getOperand(); + mlir::Operation *reshapeInputInst = reshapeInput->getDefiningOp(); + // If the input is defined by another reshape, bingo! + ReshapeOp reshapeInputOp = + mlir::dyn_cast_or_null<ReshapeOp>(reshapeInputInst); + if (!reshapeInputOp) + return matchFailure(); + + // Use the rewriter to perform the replacement + rewriter.replaceOp(op, {reshapeInputOp}); + return matchSuccess(); + } +}; + +/// Fold reshape(x)) -> x, when input type matches output type +struct SimplifyNullReshape : public mlir::RewritePattern { + SimplifyNullReshape(mlir::MLIRContext *context) + : RewritePattern(ReshapeOp::getOperationName(), /* benefit = */ 1, + context) {} + + mlir::PatternMatchResult + matchAndRewrite(mlir::Operation *op, + mlir::PatternRewriter &rewriter) const override { + ReshapeOp reshape = op->cast<ReshapeOp>(); + if (reshape.getOperand()->getType() != reshape.getResult()->getType()) + return matchFailure(); + rewriter.replaceOp(reshape, {reshape.getOperand()}); + return matchSuccess(); + } +}; + +} // end anonymous namespace. + +// Register our patterns for rewrite by the Canonicalization framework. +void TransposeOp::getCanonicalizationPatterns( + mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) { + results.push_back(llvm::make_unique<SimplifyRedundantTranspose>(context)); +} + +// Register our patterns for rewrite by the Canonicalization framework. +void ReshapeOp::getCanonicalizationPatterns( + mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) { + results.push_back(llvm::make_unique<SimplifyReshapeConstant>(context)); + results.push_back(llvm::make_unique<SimplifyReshapeReshape>(context)); + results.push_back(llvm::make_unique<SimplifyNullReshape>(context)); +} + +namespace { + +/// Fold type.cast(x) -> x, when input type matches output type +struct SimplifyIdentityTypeCast : public mlir::RewritePattern { + SimplifyIdentityTypeCast(mlir::MLIRContext *context) + : RewritePattern(TypeCastOp::getOperationName(), /* benefit = */ 1, + context) {} + + mlir::PatternMatchResult + matchAndRewrite(mlir::Operation *op, + mlir::PatternRewriter &rewriter) const override { + TypeCastOp typeCast = op->cast<TypeCastOp>(); + auto resTy = typeCast.getResult()->getType(); + auto *candidateOp = op; + while (candidateOp && candidateOp->isa<TypeCastOp>()) { + if (resTy == candidateOp->getOperand(0)->getType()) { + rewriter.replaceOp(typeCast, {candidateOp->getOperand(0)}); + return matchSuccess(); + } + candidateOp = candidateOp->getOperand(0)->getDefiningOp(); + } + return matchFailure(); + } +}; + +} // end anonymous namespace. + +void TypeCastOp::getCanonicalizationPatterns( + mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) { + results.push_back(llvm::make_unique<SimplifyIdentityTypeCast>(context)); +} + +} // namespace toy diff --git a/mlir/ToyDialect.cpp b/mlir/ToyDialect.cpp new file mode 100644 index 0000000..be117f5 --- /dev/null +++ b/mlir/ToyDialect.cpp @@ -0,0 +1,405 @@ +//===- ToyDialect.cpp - Toy IR Dialect registration in MLIR ---------------===// +// +// Copyright 2019 The MLIR Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +// ============================================================================= +// +// This file implements the dialect for the Toy IR: custom type parsing and +// operation verification. +// +//===----------------------------------------------------------------------===// + +#include "toy/Dialect.h" + +#include "mlir/IR/Builders.h" +#include "mlir/IR/StandardTypes.h" +#include "mlir/Support/STLExtras.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/Regex.h" +#include "llvm/Support/raw_ostream.h" + +using llvm::ArrayRef; +using llvm::raw_ostream; +using llvm::raw_string_ostream; +using llvm::SmallVector; +using llvm::StringRef; +using llvm::Twine; + +namespace toy { +namespace detail { + +/// This class holds the implementation of the ToyArrayType. +/// It is intended to be uniqued based on its content and owned by the context. +struct ToyArrayTypeStorage : public mlir::TypeStorage { + /// This defines how we unique this type in the context: our key contains + /// only the shape, a more complex type would have multiple entries in the + /// tuple here. + /// The element of the tuples usually matches 1-1 the arguments from the + /// public `get()` method arguments from the facade. + using KeyTy = std::tuple<ArrayRef<int64_t>>; + static unsigned hashKey(const KeyTy &key) { + return llvm::hash_combine(std::get<0>(key)); + } + /// When the key hash hits an existing type, we compare the shape themselves + /// to confirm we have the right type. + bool operator==(const KeyTy &key) const { return key == KeyTy(getShape()); } + + /// This is a factory method to create our type storage. It is only + /// invoked after looking up the type in the context using the key and not + /// finding it. + static ToyArrayTypeStorage *construct(mlir::TypeStorageAllocator &allocator, + const KeyTy &key) { + // Copy the shape array into the bumpptr allocator owned by the context. + ArrayRef<int64_t> shape = allocator.copyInto(std::get<0>(key)); + + // Allocate the instance for the ToyArrayTypeStorage itself + auto *storage = allocator.allocate<ToyArrayTypeStorage>(); + // Initialize the instance using placement new. + return new (storage) ToyArrayTypeStorage(shape); + } + + ArrayRef<int64_t> getShape() const { return shape; } + +private: + ArrayRef<int64_t> shape; + + /// Constructor is only invoked from the `construct()` method above. + ToyArrayTypeStorage(ArrayRef<int64_t> shape) : shape(shape) {} +}; + +} // namespace detail + +mlir::Type ToyArrayType::getElementType() { + return mlir::FloatType::getF64(getContext()); +} + +ToyArrayType ToyArrayType::get(mlir::MLIRContext *context, + ArrayRef<int64_t> shape) { + return Base::get(context, ToyTypeKind::TOY_ARRAY, shape); +} + +ArrayRef<int64_t> ToyArrayType::getShape() { return getImpl()->getShape(); } + +mlir::MemRefType ToyArrayType::toMemref() { + auto memRefType = mlir::MemRefType::get(getShape(), getElementType(), {}, 0); + return memRefType; +} + +/// Dialect creation, the instance will be owned by the context. This is the +/// point of registration of custom types and operations for the dialect. +ToyDialect::ToyDialect(mlir::MLIRContext *ctx) : mlir::Dialect("toy", ctx) { + addOperations<ConstantOp, GenericCallOp, PrintOp, TransposeOp, ReshapeOp, + MulOp, AddOp, ReturnOp, AllocOp, TypeCastOp>(); + addTypes<ToyArrayType>(); +} + +/// Parse a type registered to this dialect, we expect only Toy arrays. +mlir::Type ToyDialect::parseType(StringRef tyData, mlir::Location loc) const { + // Sanity check: we only support array or array<...> + if (!tyData.startswith("array")) { + getContext()->emitError(loc, "Invalid Toy type '" + tyData + + "', array expected"); + return nullptr; + } + // Drop the "array" prefix from the type name, we expect either an empty + // string or just the shape. + tyData = tyData.drop_front(StringRef("array").size()); + // This is the generic array case without shape, early return it. + if (tyData.empty()) + return ToyArrayType::get(getContext()); + + // Use a regex to parse the shape (for efficient we should store this regex in + // the dialect itself). + SmallVector<StringRef, 4> matches; + auto shapeRegex = llvm::Regex("^<([0-9]+)(, ([0-9]+))*>$"); + if (!shapeRegex.match(tyData, &matches)) { + getContext()->emitError(loc, "Invalid toy array shape '" + tyData + "'"); + return nullptr; + } + SmallVector<int64_t, 4> shape; + // Iterate through the captures, skip the first one which is the full string. + for (auto dimStr : + llvm::make_range(std::next(matches.begin()), matches.end())) { + if (dimStr.startswith(",")) + continue; // POSIX misses non-capturing groups. + if (dimStr.empty()) + continue; // '*' makes it an optional group capture + // Convert the capture to an integer + unsigned long long dim; + if (getAsUnsignedInteger(dimStr, /* Radix = */ 10, dim)) { + getContext()->emitError( + loc, "Couldn't parse dimension as integer, matched: " + dimStr); + return mlir::Type(); + } + shape.push_back(dim); + } + // Finally we collected all the dimensions in the shape, + // create the array type. + return ToyArrayType::get(getContext(), shape); +} + +/// Print a Toy array type, for example `array<2, 3, 4>` +void ToyDialect::printType(mlir::Type type, raw_ostream &os) const { + auto arrayTy = type.dyn_cast<ToyArrayType>(); + if (!arrayTy) { + os << "unknown toy type"; + return; + } + os << "array"; + if (!arrayTy.getShape().empty()) { + os << "<"; + mlir::interleaveComma(arrayTy.getShape(), os); + os << ">"; + } +} + +//////////////////////////////////////////////////////////////////////////////// +//////////////////// Custom Operations for the Dialect ///////////////////////// +//////////////////////////////////////////////////////////////////////////////// + +/// Helper to verify that the result of an operation is a Toy array type. +template <typename T> static mlir::LogicalResult verifyToyReturnArray(T *op) { + if (!op->getResult()->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its argument, got " + << op->getResult()->getType(); + return op->emitOpError(os.str()); + } + return mlir::success(); +} + +/// Helper to verify that the two operands of a binary operation are Toy +/// arrays.. +template <typename T> static mlir::LogicalResult verifyToyBinOperands(T *op) { + if (!op->getOperand(0)->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its LHS, got " + << op->getOperand(0)->getType(); + return op->emitOpError(os.str()); + } + if (!op->getOperand(1)->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its LHS, got " + << op->getOperand(0)->getType(); + return op->emitOpError(os.str()); + } + return mlir::success(); +} + +/// Build a constant operation. +/// The builder is passed as an argument, so is the state that this method is +/// expected to fill in order to build the operation. +void ConstantOp::build(mlir::Builder *builder, mlir::OperationState *state, + ArrayRef<int64_t> shape, mlir::DenseElementsAttr value) { + state->types.push_back(ToyArrayType::get(builder->getContext(), shape)); + auto dataAttribute = builder->getNamedAttr("value", value); + state->attributes.push_back(dataAttribute); +} + +/// Build a constant operation. +/// The builder is passed as an argument, so is the state that this method is +/// expected to fill in order to build the operation. +void ConstantOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::FloatAttr value) { + // Broadcast and forward to the other build factory + mlir::Type elementType = mlir::FloatType::getF64(builder->getContext()); + auto dataType = builder->getTensorType({1}, elementType); + auto dataAttribute = builder->getDenseElementsAttr(dataType, {value}) + .cast<mlir::DenseElementsAttr>(); + + ConstantOp::build(builder, state, {1}, dataAttribute); +} + +/// Verifier for constant operation. +mlir::LogicalResult ConstantOp::verify() { + // Ensure that the return type is a Toy array + if (failed(verifyToyReturnArray(this))) + return mlir::failure(); + + // We expect the constant itself to be stored as an attribute. + auto dataAttr = getAttr("value").dyn_cast<mlir::DenseElementsAttr>(); + if (!dataAttr) { + return emitOpError( + "missing valid `value` DenseElementsAttribute on toy.constant()"); + } + auto attrType = dataAttr.getType().dyn_cast<mlir::TensorType>(); + if (!attrType) { + return emitOpError( + "missing valid `value` DenseElementsAttribute on toy.constant()"); + } + + // If the return type of the constant is not a generic array, the shape must + // match the shape of the attribute holding the data. + auto resultType = getResult()->getType().cast<ToyArrayType>(); + if (!resultType.isGeneric()) { + if (attrType.getRank() != resultType.getRank()) { + return emitOpError("The rank of the toy.constant return type must match " + "the one of the attached value attribute: " + + Twine(attrType.getRank()) + + " != " + Twine(resultType.getRank())); + } + for (int dim = 0; dim < attrType.getRank(); ++dim) { + if (attrType.getShape()[dim] != resultType.getShape()[dim]) { + std::string msg; + raw_string_ostream os(msg); + return emitOpError( + "Shape mismatch between toy.constant return type and its " + "attribute at dimension " + + Twine(dim) + ": " + Twine(attrType.getShape()[dim]) + + " != " + Twine(resultType.getShape()[dim])); + } + } + } + return mlir::success(); +} + +void GenericCallOp::build(mlir::Builder *builder, mlir::OperationState *state, + StringRef callee, ArrayRef<mlir::Value *> arguments) { + // Generic call always returns a generic ToyArray initially + state->types.push_back(ToyArrayType::get(builder->getContext())); + state->operands.assign(arguments.begin(), arguments.end()); + auto calleeAttr = builder->getStringAttr(callee); + state->attributes.push_back(builder->getNamedAttr("callee", calleeAttr)); +} + +mlir::LogicalResult GenericCallOp::verify() { + // Verify that every operand is a Toy Array + for (int opId = 0, num = getNumOperands(); opId < num; ++opId) { + if (!getOperand(opId)->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its " << opId << " operand, got " + << getOperand(opId)->getType(); + return emitOpError(os.str()); + } + } + return mlir::success(); +} + +/// Return the name of the callee. +StringRef GenericCallOp::getCalleeName() { + return getAttr("callee").cast<mlir::StringAttr>().getValue(); +} + +template <typename T> static mlir::LogicalResult verifyToySingleOperand(T *op) { + if (!op->getOperand()->getType().template isa<ToyArrayType>()) { + std::string msg; + raw_string_ostream os(msg); + os << "expects a Toy Array for its argument, got " + << op->getOperand()->getType(); + return op->emitOpError(os.str()); + } + return mlir::success(); +} + +void ReturnOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value) { + // Return does not return any value and has an optional single argument + if (value) + state->operands.push_back(value); +} + +mlir::LogicalResult ReturnOp::verify() { + if (getNumOperands() > 1) + return emitOpError("expects zero or one operand, got " + + Twine(getNumOperands())); + if (hasOperand() && failed(verifyToySingleOperand(this))) + return mlir::failure(); + return mlir::success(); +} + +void PrintOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value) { + // Print does not return any value and has a single argument + state->operands.push_back(value); +} + +mlir::LogicalResult PrintOp::verify() { + if (failed(verifyToySingleOperand(this))) + return mlir::failure(); + return mlir::success(); +} + +void TransposeOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value) { + state->types.push_back(ToyArrayType::get(builder->getContext())); + state->operands.push_back(value); +} + +mlir::LogicalResult TransposeOp::verify() { + if (failed(verifyToySingleOperand(this))) + return mlir::failure(); + return mlir::success(); +} + +void ReshapeOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value, ToyArrayType reshapedType) { + state->types.push_back(reshapedType); + state->operands.push_back(value); +} + +mlir::LogicalResult ReshapeOp::verify() { + if (failed(verifyToySingleOperand(this))) + return mlir::failure(); + auto retTy = getResult()->getType().dyn_cast<ToyArrayType>(); + if (!retTy) + return emitOpError("toy.reshape is expected to produce a Toy array"); + if (retTy.isGeneric()) + return emitOpError("toy.reshape is expected to produce a shaped Toy array, " + "got a generic one."); + return mlir::success(); +} + +void AddOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *lhs, mlir::Value *rhs) { + state->types.push_back(ToyArrayType::get(builder->getContext())); + state->operands.push_back(lhs); + state->operands.push_back(rhs); +} + +mlir::LogicalResult AddOp::verify() { + if (failed(verifyToyBinOperands(this))) + return mlir::failure(); + return mlir::success(); +} + +void MulOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *lhs, mlir::Value *rhs) { + state->types.push_back(ToyArrayType::get(builder->getContext())); + state->operands.push_back(lhs); + state->operands.push_back(rhs); +} + +mlir::LogicalResult MulOp::verify() { + if (failed(verifyToyBinOperands(this))) + return mlir::failure(); + return mlir::success(); +} + +void AllocOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Type retType) { + state->types.push_back(retType); +} + +void TypeCastOp::build(mlir::Builder *builder, mlir::OperationState *state, + mlir::Value *value, mlir::Type destTy) { + state->operands.push_back(value); + state->types.push_back(destTy); +} + +} // namespace toy |